
cardTAP : Automated Deduction on a Smart CardAndrew Slater1 , Rajeev Gor�e1;2�, Joachim Posegga3, Harald Vogt3fandrews,rpgg@arp.anu.edu.au fposegga,vogtg@tzd.telekom.detel: +61-2-62798603 fax: +61-2-627986511 Automated Reasoning Project, Australian National University, 0200, Canberra2 Department of Computer Science, Australian National University, 0200, Canberra3 Deutsche Telekom AG, Technologiezentrum, IT Security, D-64307 DarmstadtAbstract. We present the �rst implementation of a theorem proverwhich runs on a smart card. The prover is written in Java and implementsa dual tableau calculus.1 Due to the limited resources available on cur-rent smart cards, the prover is restricted to propositional classical logic.It can be easily extended to full �rst-order logic. The potential applica-tions for our prover lie within the context of security related functionsbased on trusted devices such as smart cards.Keywords: automated deduction, tableaux, leanTAP, security, java,proof carrying code1 Smart Cards: the Secure PC of TomorrowSmart cards are currently evolving into one of the most exciting and most signif-icant technologies of the information society. Current smart cards on the marketare in fact small computers consisting of a processor, ROM and RAM, an operat-ing system, a �le system, etc. This miniature computer resides within a tamperproof chip attached to a plastic card such as a credit card. The computer onlylacks the typical I/O devices, but can communicate with a smart card readingmachine, and has a small EEPROM (Electrically Erasable Programmable ReadOnly Memory) space analogous to computer disk space. Although their resourcesare still quite restricted, continuous advances in chip manufacturing will soonenable smart cards with 32 bit processors and up to 128 Kb of memory. Manufac-turers are also thinking about integrating small keyboards and LCD displays onthese plastic cards. Thus, the next generation of smart cards will be as powerfulas PCs were a few years ago.The evolution of smart card technology resembles the development of com-puter technology over the last 20 years: the separation of \physics" and \logic".While early computers had to be programmed in machine language because each� Supported by an Australian Research Council Queen Elizabeth II Fellowship1 For further information about the system and obtaining the code seehttp://arp.anu.edu.au/�andrews/cardtap. An interactive simulation version willbe made available in the future.

bit of memory and each instruction cycle was valuable, the increase of resourcesand processing power made it a�ordable to trade resources for higher level pro-gramming concepts and languages. This separation of software and hardwarewas the basis for the spread of computers into everyday life during this decade.The same phenomenon is about to take place in smart card technology: asresources and processing power increase, it will become a�ordable to neglect theoptimal use of the card processor and memory. The most promising move inthis direction is Java smart cards, where a Java virtual machine is implementedinside the card. The software determining the function of the card is no longertied to the particular card, but multiple applications can be loaded onto, andremoved from, the card as desired.The primary purpose of smart cards will probably continue to be security-related applications since they serve primarily as a trusted device for their owner.The most important applications to date are of a cryptographic nature like au-thentication and encryption, e.g. for electronic cash. Future applications runningon more complex cards will be able to carry out more complex operations so thatthe smart card of the future will be a secure, personal computer.Current smart cards have security-related applications hard-wired onto them.Future smart cards will serve multiple purposes and will be adaptable by down-loading one or more applications. Interactions between such applications, andbetween the card and the outside world therefore become non-trivial. Securityissues arise when new and hence untrusted code is introduced to the device, andwhen known code on the device is requested to perform a sequence of transac-tions that could result in a violation of security. In both cases we can test formalicious intent by verifying that insecure situations cannot eventuate. Formallogic is not only well-suited for modelling such complex interactions but is alsoideal for describing a given security model. Consequently, a trusted, secure, per-sonal device should be able to perform logical reasoning to ensure that the cardcomplies to its owner's security model. A concrete example of the use of formallogic for the purposes of code-safety has been given in the context of proof-carrying code [1]. The signi�cance of implementing a theorem prover capableof operating on a smart card is that we may determine the viability of usingtechniques from automated deduction to absolutely ensure security in situationswhere the exibility of advanced smart card technology thwarts their popularuse as a trusted device. At the practical level, untrusted code veri�cation wouldrequire an automated deduction system, using an appropriately customised logic,to prove that a sequence of Java byte-code complies with a given security model.Additionally, we suggest that these small veri�cation systems on smart cards willhave applications for testing the legality of given input command sequences fora given smart card application and a particular owner's security model.Automated theorem proving in classical logics is now a mature �eld, butautomation of theorem proving in non-classical logics is a thriving �eld in arti-�cial intelligence research. Extensions of our system will allow veri�cation usingcommunication protocols expressed in modal and authentication logics [2].The challenge to implement a veri�cation system for a smart card is to iden-

tify theorem proving techniques which will function e�ciently in the limited timeand space resources on these small machines. Here we describe cardTAP , the �rstsuccessful implementation of a theorem prover on a Java smart card.2 ImplementationcardTAP is a theorem prover that uses a dual tableaux method based on leanTAP[3]. leanTAP is written in Prolog but cardTAP is written in Java and must there-fore function without the underlying backtracking engine. cardTAP is designedto reside on a smart card with minimal resources, hence it is required that theprogram executable size be small, in this case less than 2 Kilobytes. Addition-ally, the stack usage is minimal and heap space, or allocated memory, is alsominimal. To implement a proof procedure under these restrictions, cardTAP sim-ulates a recursive environment powerful enough to perform dual tableaux. Whilebacktracking is not necessary for propositional classical logic, cardTAP has beenimplemented for extensions to other logics. The trade o� for using this designis e�ciency: some work must be repeated as we cannot save all the informationcomputed from intermediate states during the proof procedure. The resultingtheorem prover is small enough to reside on the smart card as a Java applet thatcan be commanded, �rst to download a formula, and second to determine thatformula's theoremhood, using a machine that can communicate with the card.2.1 The Veri�cation Method: TableauxThe tableaux method of automated theorem proving is a syntactic refutation sys-tem that results in a natural depth �rst search of a proof tree [4]. Each \node" inthe proof tree consists of a set of formul�. A set of tableaux rules speci�es howthe tree may be constructed, and these rules guide the transformation of sets offormula from a parent node to children. A tableaux may also be described asan \upside-down left-handed sequent system" [5]. The tableaux method beginswith a single node (the root) containing the negation of the formula to be testedfor theoremhood. If every branch of the ensuing tableaux leads to a contradic-tion then the root node is deemed unsatis�able. Thus the original formula is atheorem. The dual-tableaux method avoids the initial negation operation andbegins with the formula itself. In order to do this the method provides a \dual"set of tableaux rules to construct the proof tree. Figure 1 shows these rules forthe binary operators AND and OR. Rules for their negations may be created byusing the DeMorgan laws.A path in the proof tree terminates when no more rules can be applied. The�nal node of such a path contains a set of literals; that is, a set of atomic formulaand negations of atomic formula. The initial formula is falsi�able, and hence anon-theorem, if we can consistently assign \false" to each literal. If a set containsp and �p then such an assignment is impossible, hence we \close" the path whenthe set contains a tautology, i.e., there is some atomic formula p such that both

(AND) [A&B][A] left child j [B] right child (OR) [A _B][A;B] only childFig. 1. Some Dual Tableaux Proof Tree Generation Rulesp and �p are in the set. If every path in the proof tree for a formula closes thenthat formula has been veri�ed as a theorem.2.2 Input Formula Speci�cationsLike leanTAP , cardTAPonly accepts formul� in Negated Normal Form (NNF).This means that negation symbols must be \pushed in" toward the atomicpropositions, and this can be done with a simple polynomial-time algorithm.cardTAPalso uses Reverse Polish Notation (RPN). The RPN format reduces theamount of space required for the description of the formula and makes the parsingprocess simpler. Additionally, simple optimisations can be performed e�cientlywhen translating any given propositional formula into NNF RPN. Some of theexcess EEPROM space not used by executable code is used as virtual memoryto store the given formula. Once the formula is downloaded onto the Smart Cardit is seen as an EEPROM �le. Since EEPROM access is slow, the e�ciency ofaccessing the formula can be enhanced by using a small bu�er, or cache, in localmemory as a \window" into the formula.2.3 Prover ExecutionThe theorem proving process takes advantage of the RPN format of the formulaby viewing it as the parse tree for that formula. The dual tableaux algorithmallows us to scan the parse tree and use a simple strategy to generate andtraverse the tableaux proof tree. By requiring the formula to be in NNF theonly branching tableaux rule needed is one for conjunctions. Therefore, in thegenerated proof tree, branches only occur at conjunctions and the arguments todisjunctions are interpreted as a list of additional subformul� to be processed.The prover traverses each path from the root of the proof tree to the leaves.During each traversal state information about the propositional variables forthat path is accumulated and checked for path closure i.e. a tautology in thepath. The state information is reset before traversing any path.Since the method is tree based it could be solved nicely with recursion, how-ever this prover cannot be recursive as it would quickly exhaust the availablestack space. There are also space restrictions on how much information we canretain at any step in the veri�cation. Typically a dual tableaux theorem proveris capable of remembering or copying the accumulated state information at theconjunction nodes in the proof tree before it takes the �rst branch. By doing soit can return to that branching point and traverse the alternate path using the

previously saved state information. cardTAP does not have enough memory spaceto arbitrarily store a `state' for every branch point. cardTAP simulates the depth�rst traversal by requiring that every possible path in the proof tree, from rootto leaf, is traversed separately, and that during each traversal the state informa-tion for that path is accumulated. To achieve this cardTAP maintains a simplebinary map of the conjunctions encountered in the proof tree. This conjunctionmap allows the prover to be directed through each branching possibility, in aleft to right order, and thus explore every path iteratively by using the map.Disjunctions do not cause branching in the proof tree, however every ar-gument must be made available while searching for termination in a path. Thestrategy here is to process the �rst disjunct and save the position of the second incase it is needed later. cardTAP maintains a disjunction list so that, if the proverreaches a node which does not close or branch, it can search the disjunction listfor further subformul� to process. Each such subformula is the second argumentto some disjunction previously encountered in the current path. If a disjunctis available then that subformula may be immediately processed as if it wereattached to the current node. The list actually holds the location of subformul�so that they may be easily found within the main formula. Each path, from rootto leaves, must generate a new disjunction map as the path is traversed.The proof tree traversal is performed within a loop which terminates when:(i) A path ends without closure and no remaining disjunctive arguments re-main to be processed. Since the path has not closed during the traversal theformula is a non-theorem.(ii) All paths in the proof tree have been traversed (the conjunction map isexhausted), and have closed. In this case the formula is a theorem.2.4 Example ExecutionThe following example illustrates how the algorithm tests the formula (a&b&c)+(�a+�b+�c), which is derived from a DeMorgan equivalence. Here we use thesame notation as is accepted by cardTAP where Boolean AND is &, Boolean ORis +, and negation is �. Note also that our NNF RPN notation also assumesthat both AND and OR are binary operators. The formula we give to cardTAP is+&&abc++� a� b� c. While we could not a�ord the resources to implementhigher level data structures, such as lists, we will use these concepts in theexample to simplify the description and note that they were easily simulatedwith equivalent non-recursive data structures in the actual code.The �rst path taken by cardTAP is illustrated in Figure 2 by the unbrokenarrows. We will call the conjunction map the AND map, and use it as a listcontaining directions of either Left orRight. The list storing secondary argumentsto disjunctions is called the OR list and this stores the position of the disjunctivesubformul� that we may want to process later. Before the process starts boththe AND map and the OR list are empty, and the state information indicatesthat no propositional variables have been encountered. The �rst token is + so the

..
......................................

..........
..........

place index to `++-a-b-c' in OR list&+

a b c& Right SideLeft Side
++-a-b-c+-a-b-a taken from OR listplace index to `-c' in OR list and process `+-a-b'place index to `-b' in OR list and process `-a'this branch closes on variable `a'state and OR list reset and AND map updated to [Left, Right]Fig. 2. The traversal of the �rst path in the proof tree for the formula+&&abc++� a� b� c. The �rst path follows the default AND map, [Left, Left].second argument in the disjunction, which is the subformula ++�a� b� c, hasit's position in the formula placed in the OR list. This leaves the �rst argumentof the main disjunction, &&abc, to be processed immediately. This subformulais a conjunction of &ab and c. Since the tree traversal defaults to taking theleft branch �rst we record the action by adding this direction to the end of theAND map (initially empty). We then move along the formula to process the�rst conjunct &ab. Again a conjunction is encountered and we process the leftbranch and record the action by placing the direction taken (Left) at the endof the AND map. We are now left with the literal token a which is recordedas being encountered in our state environment. It is obvious that we cannotcontinue the traversal, and that the proof tree has not closed yet, so we mustrefer to the OR list. The OR list holds one element which we take out andproceed processing again in a similar nature. In this case, however, every timewe encounter a disjunction we place an index to the second argument in the ORlist and then process the �rst argument. Eventually we �nd the literal token �awhich closes this path.Since the �rst path closed and the AND map is non-empty we must evaluatefurther possible paths to complete the proof tree. To ensure that all paths are

taken the AND map is updated in the following way:(i) Remove all Right entries at the end of the list, since we now have investigatedthese paths.(ii) If entries remain then change the last entry, which must be Left, to Right.(iii) If no entries remain in the AND map then we are done and the formula is atheorem.Note that in case (iii) we are left with a theorem since the algorithm terminateswith a result of failure as soon as we reach the end of an open path. Each timewe begin traversal of a new path we reset the OR list, reset the propositionalvariable state information, but retain the AND map. When a path is traversedthe AND map is used as a guide through the tree, always defaulting to left whena new conjunction is encountered.3 Experimental ResultsThe theorem prover was developed and initially tested in a simulated environ-ment. The simulated execution evaluated the theoremhood of all test data cor-rectly. The corresponding execution times indicated that the inclusion of opti-misation techniques, such as windowing the EEPROM stored formula in a localmemory bu�er, enhanced the performance signi�cantly. This version of the the-orem prover, while operating in hardware limitations close to that of the Javasmart card later used, had to be modi�ed to execute on that smart card. Thelimitations of the Java smart card used did not permit any extra enhancementsto be included due to program size, neither did it permit much separation ofcode due to the stack usage of procedure calls. It is envisaged that the nextgeneration of Smart Cards entering the market in mid-98 will not require thesemodi�cations.We successfully ran cardTAP on a smart card provided by Schlumberger [6]implementing JavaCard API V1.0 [7]. This card handles applications of up to2.8K and o�ers approximately 200 bytes of main memory during run time. Ourtest formul� consisted of 17 theorems of propositional logic [8] converted intoNNF RPN. We also tested some non-theorems, obtained by mutating some ofthese 17 theorems.The prover applet is limited by statically de�ned restrictions on the lengthand complexity of the formula. This is required as a dynamic interpretationof formul� may exhaust the resources of the smart card. In testing mode theformula could use up to 26 distinct variables, could have at most 20 disjunctions,and could have at most 20 nested conjunctions. The theorem length was limitedto a maximum of 126 symbols. With larger hardware resources available on thecard, these limitations may be safely extended.Each formula was loaded onto the card individually and tested using the proofprocedure described above. The interaction was performed through LoadSolo, asimple tool for communicating with the card, which came with the CyberexDevelopment Kit [6]. cardTAP returned an answer code indicating whether or

Name RPN NNF Formula Execution TimePelletier's 17 theorems:P1 +&&p-q&-qp&+-pq+q-p 21.9 sP2 +&pp&-p-p 6.9 sP3 ++-pq+-qp 2.0 sP4 +&&-p-q&-q-p&+pq+qp 22.1 sP5 +&+pq&-p-r+p+-qr 8.7 sP6 +p-p 1.7 sP7 +p-p 1.7 sP8 +p&+-pq-p 3.2 sP9 +&pq+&-pq+&-p-q&p-q 27.6 sP10 ++&pq&-p-q+&q-r+&p&-q-r&r+-p-q 93.0 sP11 +&pp&-p-p 7.0 sP12 +&+&+&pq&-p-qr&+&p-q&-pq-r+&p+&qr&-q-r&-p+&q-r&-qr&+&+&pq&-p-q-r&+&p-q&-pqr+&p+&q-r&-qr&-p+&qr&-q-r -P13 +&&-p+-q-r+&-p-q&-p-r&+p&qr&+pq+pr 110.0 sP14 +&+&p-q&-pq+&-qp&q-p&+&pq&-p-q&+q-p+-qp 160.0 sP15 +&&p-q&p-q&+-pq+-pq 22.1 sP16 ++-pq+-qp 2.0 sP17 +&&&p+-qr-s+&&p-q-s&&pr-s&+s+-p&q-r&+s+-pq+s+-p-r -Non-theorems:N1 &-pp 2.0 sN2 +pp 2.4 sN3 p 1.8 sN4 -p 1.8 sN5 +&&p-q&-qp&+-pq+qp 7.2 sN6 +&+p-q&-qp&+-pq+qp 25.3 sN7 +&pp&p-p 2.7 sN8 ++-pq+q-p 5.0 sN9 +p&+-pqp 6.7 sN10 +&pq+&-p-q+&-p-q&p-q 7.3 sTable 1. Median smart card execution times using the test data set.not the formula was a theorem. All measurements were made by hand: eachtheorem was proved 3 times, the fastest and the slowest times were discarded.The run-times presented in Table 1 include communication overhead.Timing constraints enforced by the card, due to requirements of ISO smartcard standards, either raised an exception or garbled communication duringsome of the longer computations. These problems could be partially solved byinterspersing commands which send data from the card to the reader. Thesemodi�cations are su�cient for proving the shorter theorems, theorems P10 andP13, but for the larger ones, like theorem P14, additional modi�cations had to be

made. All modi�cations concern only additional commands for communication.Theorems P12 and P17 could not be proved with any version of cardTAP .4 Conclusions and OutlookThe current version of cardTAP is a propositional logic theorem prover writtenin Java. The methodology is essentially the same as that of the Prolog �rstorder logic theorem prover leanTAP . With greater available resources on smartcards, an extension of cardTAP to �rst-order logic is straightforward. Additionallythe tableaux method is easily extended to incorporate modalities [9], allowingmodal and in particular temporal notions in the logic [10]. These extensionsare of interest with respect to authentication logics and the use of veri�cationto enhance the security of smart cards since authentication logics are based onmodal logics [2].Our experiments yielded very slow execution times which reect the compu-tational power of current smart card technology, but we succeeded in demonstrat-ing that it is possible for automated deduction software to reside and execute ona smart card. While smart card technology is not yet powerful enough to verifypotential applets, it is approaching the capability of veri�cation of communica-tion sequences based on logical formalisations of the communication protocol.The simplicity of the Java code is a direct result of the tableau methodol-ogy which nicely partitions the problem into multiple branches, each of whichcan be explored using the limited resources individually. In contrast, \global"procedures such as resolution would not have been as well suited since theyaccumulate information rather than partitioning it.References1. George Necula and Peter Lee. Proof carrying code. Technical Report CMU-CS-96-165, Carnegie Mellon University, School of Computer Science, Pittsburgh, PA,September 1996.2. Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication.ACM Transactions on Computer Systems, 8(1):18{36, February 1990.3. Bernhard Beckert and Joachim Posegga. leanTAP : Lean tableau-based deduction.Journal of Automated Reasoning, 15(3):339{358, 1995.4. Melvin Fitting. First Order Logic and Automated Theorem Proving. Springer-Verlag, 1990.5. Jean H. Gallier. Logic for Computer Science: Foundations of Automatic TheoremProving. John Wiley and Sons, 1987.6. Schlumberger Inc. Cyberex. http://www.cyberex.austin.et.slb.com, 1997.7. JavaSoft Inc. Javacard API. http://www.javasoft.com/products/javacard/, 1997.8. Francis J. Pelletier. Seventy-�ve problems for testing automatic theorem provers.Journal of Automated Reasoning, 2:191{216, 1986.9. Bernhard Beckert and Rajeev Gor�e. Free variable tableaux for propositional modallogics. In D Galmich, editor, Proceedings of the International Conference on The-orem Proving with Analytic Tableaux and Related Methods, volume Lecture Notesin Arti�cial Intelligence of LNCS, pages 91{106. Springer, May 1997.

10. Nicolette Bonnette and Rajeev Gor�e. A labelled sequent system for tense logicKt. In These proceedings, 1998.

This article was typeset using the LATEX macro package with the LLNCS2E class.

