Linking losses for density ratio and class-probability estimation

Q: Can we estimate density ratios using a class-probability
estimator (e.g. logistic regression)?

A: Yes, there is a clear asymptotic link between the two.

Class-probability and density ratio estimation

We provide a formal link between two problems:

Density ratio estimation
(DRE): estimate (from
samples) the ratio between
two probability densities.

Class-probability
estimation (CPE): estimate
(from samples) probability
of instance being +ve.
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Usage: supervised
learning, bipartite ranking.

Usage: covariate shift

Preliminaries

Class conditionals and

For instance space X, let D
be distribution over X x {x 1},
with class-conditionals P, Q,
class-probability function n.

Given a distribution D, the two problems require estimating:
DRE CPE:
class-conditional ratio r = p/g class-probability function n

Bayes’ rule gives the asymptotic link between the two:
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To link approximate solutions for each, we need to recall:

Scorer: any s: X — R, for example a linear model
Risk: For any loss £, L(s;D,¢) = Ex y)~p [£(Y, s(X))]

Call { strictly proper composite with link ¥ when risk minimiser
Iss* =W on. e.qg. logistic loss has as ¥ the logit function.

adaptation, outlier detection.
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Q: Can we formally justify using an approximate class-probability
estimate to compute density ratios?

A: Yes, via a novel Bregman identity and a notion of regret.

Existing DRE methods as CPE losses
Our study revolves around a loss function view of the two
problems. Consider two popular discriminative DRE losses:
KLIEP: LSIF:
(_1(v) =a-vand l;(v) = —logv {—1(v) =1/2-v*and {1 (v) = —v,
Usually understood as divergence estimation, but in fact:

Lemma. KLIEP and LSIF are proper composite with link W,

These popular methods implicitly perform CPE, with risk
minimiser exactly the density ratio!

More generally, we could minimise a CPE loss £, and estimate
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where 7 = ¥~ o s. While intuitive, what can we guarantee
about the quality of such an estimate?

A Bregman identity

Basic property of CPE losses: the regret or excess risk is:

reg(s; D, ) = L(s; D, €) — L(Von; D, £) = Exwm [By(n(X), (X))
for certain loss-dependent f and Bregman divergence B; This
gives a clear sense in which we accurately model n.

We can extend this to DRE via:

Lemma. For f: [0,1] =2 R convex and twice differentiable,
<
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Proof is via integral representation of Bregman divergences.
This implies that for any strictly proper composite ¢,

reg(s; D, l) =1/2- Exq [Bf@ (T(X)a’ﬁ(x))] :

where »r =V, on, 7 = ¥, o7, giving a clear sense in which we
accurately model r. This justifies using CPE uses for DRE; but
we can also adopt theory from the former to help in the Iatter.
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Q: Can we go the other way and use density ratio estimators in
problems where class-probability estimators are used?

A: Yes, they may be useful in “top ranking” problems.

Designing new CPE losses for DRE

Any CPE regret may be equivalently written:
-l

reg(s: D, () = Exn / w(c) - reg, (n(X), (X)) de] .

for weight function w = f”and same f as before. Intuitively, a
loss focusses on the range of n values where w is large.
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From the previous panel, we have:

1

reg(sD.6) = 3 x| [ won(p) - res, (r(X).7(X)) dp

where the weights over density and cost ratios relate via:
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To target a range of density ratio values, we can pick a loss
with high weight in this range. e.g. LSIF has uniform weighting.
We can “invert” above relation to w to find a suitable CPE loss.

Applying DRE losses for CPE problems

The link between DRE and CPE cuts both ways: we can
equally apply DRE losses where CPE losses are employed.

One such application is in bipartite ranking where accuracy at
the top of the ranked list is essential. Here, one can apply CPE
losses with weight w emphasising large cost ratios.

LSIF has such a desirable weight w(c) = 1/(1 — ¢)~. This,
combined with its closed form solution, suggest usefulness in
top ranking problems, confirmed in experiments.
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