
Q: Can we estimate density ratios using a class-probability 
estimator (e.g. logistic regression)?  
 
A: Yes, there is a clear asymptotic link between the two. 
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Density ratio estimation 
(DRE): estimate (from 
samples) the ratio between 
two probability densities. 

Q: Can we go the other way and use density ratio estimators in 
problems where class-probability estimators are used? 
 
A: Yes, they may be useful in “top ranking” problems. 

A Bregman identity 

Lemma. For f : [0,1] ! R convex and twice differentiable, 
Bayes’ rule gives the asymptotic link between the two: 
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2. Background and notation
We review some background material and fix notation.

2.1. Learning from binary labels

Denote by D a distribution over X ⇥ {±1}, with random
variables (X,Y) ⇠ D. Any D may be decomposed into
class-conditionals (P,Q) = (P(X | Y = 1),P(X | Y =

�1)) and base rate ⇡ = P(Y = 1), or into marginal M =

P(X) and class-probability function ⌘ : x 7! P(Y = 1 |

X = x). We will write D = (P,Q,⇡) or D = (M, ⌘). The
densities of P,Q are assumed to exist and denoted by p, q.

A loss is any ` : {±1}⇥ R ! R; we interchangeably write
`(y, ·) as `

y

(·). A scorer is any s : X ! R. The `-risk for
a scorer s wrt D is L(s;D, `)

·

= E(X,Y)⇠D [`(Y, s(X))]; the
Bayes-optimal scorer is s⇤ ·

= argmin

s

L(s;D, `).

2.2. Class-probability estimation

Class-probability estimation (CPE) is concerned with in-
ferring ⌘. This may be achieved via a suitable loss func-
tion. A loss ` is strictly proper composite with (invert-
ible) link function  : [0, 1] ! R if the Bayes-optimal
scorer for the `-risk is s⇤ =  � ⌘ (Buja et al., 2005; Reid
& Williamson, 2010). Examples include the logistic loss
`(y, v) = log(1 + e

�yv

) with  (p) = log p/(1 � p), ex-
ponential loss `(y, v) = e

�yv (as in AdaBoost) and square
hinge loss `(y, v) = max(0, 1 � yv)

2 (as in L2-SVMs).
If ` is differentiable, it is strictly proper composite with in-
vertible link iff (Reid & Williamson, 2010, Corollary 12)
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Given a strictly proper composite `, we call �

·

= ` �

 : [0, 1] ! R the underlying proper loss for `. The nega-
tive conditional Bayes risk f : [0, 1] ! R of ` is then

f(u)

·

= �u · �1(u)� (1� u) · ��1(u). (2)

Given a scorer s with low `-risk, we can regard ⌘̂

·

=  

�1
�s

to be an estimate of ⌘. The quality of this estimate can be
quantified: the regret or excess risk of a scorer s over the
Bayes-optimal is (Reid & Williamson, 2010, Corollary 9,
Corollary 13)
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where B

f

is a Bregman divergence with generator f , the
weight function w = f

00, and reg

c

(⌘, ⌘̂)

·

= |⌘ � c| · J(⌘ �

c) · (⌘̂ � c) < 0K the cost-sensitive pointwise regret. Intu-
itively, Equation 4 says that a loss focusses on accurately
modelling the range of ⌘ values for which w(·) is large.
For example, logistic loss has as f the negative Shannon
entropy, and so seeks an ⌘̂ with minimal KL-divergence to
⌘; further, it has weight function w(c) = (c · (1� c))

�1.

2.3. Covariate shift adaptation

In covariate shift problems (Sugiyama & Kawanabe, 2012),
we have train and test distributions DTr and DTe with
⌘Tr = ⌘Te, but MTr 6= MTe. Our goal remains to min-
imise L(s;DTe, `). This is a canonical application for DRE
because the importance weighting identity

L(s;DTe, `) = EX⇠M

⇥
r(X) · EY⇠⌘(X) [`(Y, s(X))]

⇤
(5)

for density ratio r = mTe/mTr of the corresponding
marginal densities implies that if we estimate r, we can
simply re-weight training instances accordingly so as to
adapt to the test distribution (Shimodaira, 2000). (On finite
samples, importance weighting may actually bring little or
negative improvement, and thus covariate shift adaptation
may require more than simply estimating r (Cortes et al.,
2010; Reddi et al., 2015; Swaminathan & Joachims, 2015);
this is however beyond the scope of the present paper.)

3. Linking density ratios to class-probabilities
Suppose we wish to estimate a density ratio r = p/q, given
samples from the respective densities. One can view these
samples as arising from a distribution D over binary labels,
where p and q are the densities of the class-conditional dis-
tributions, and ⇡ is the relative frequency of samples from
the densities. (For the covariate shift problem of §2.3, such
a D would encode the discrimination between training and
testing instances with p = mTe and q = mTr.)

The above suggests that methods for learning from binary
labels could be used to estimate r. Indeed, as in Bickel
et al. (2009); Smola (2010), Bayes’ rule implies:
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q(x)

·

⇡

1� ⇡

, (6)

where P(X = x) cancels for both terms in the LHS; thus,

(8x 2 X) r(x) ·

=

p(x)

q(x)

=  dr (⌘(x)) , (7)

for the link function

 dr(u)
·

=

1� ⇡

⇡

·

u

1� u

. (8)

Intuitively, this elementary fact suggests one should be able
to uses CPE losses to perform DRE, and vice-versa. The
rest of the paper makes this intuition precise. We devote
the next few sections to the usage of CPE losses for DRE,
and then return to the usage of DRE losses for CPE in §7.
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4. DRE via CPE loss minimisation
We now show how Equation 7 may be used to re-interpret
existing DRE approaches as implicitly performing CPE, as
well as motivate performing DRE via a general CPE loss.
In what follows, we assume that ⇡ = 1/2

1, so that

 dr(u) =
u

1� u

, (9)

with  �1
dr (v) = v/(1 + v) for v � 0.

4.1. Estimating density ratios with the  dr link

To estimate r, Equation 7 suggests that we minimise the
`-risk for proper composite ` with link  dr, as the corre-
sponding Bayes-optimal scorer is exactly s

⇤
=  dr�⌘ = r.

Given a scorer s with low `-risk, we can then treat r̂ = s

as an estimate of the density ratio. We now see how two
existing approaches to DRE do precisely this.

The KLIEP loss. Consider the loss

`�1(v) = a · v and `1(v) = � log v (10)

for a > 0, with corresponding risk

L(s;D, `) = EX⇠P

[� log s(X)] + a · EX⇠Q

[s(X)] (11)

defined for any s 2 S ✓ RX
+. For suitable a, finding

min

s2S L(s;D, `) is equivalent to the constrained problem

min

s2S
EX⇠P

[� log s(X)] : EX⇠Q

[s(X)] = 1,

which is exactly the objective of the KLIEP method of
Sugiyama et al. (2008); we thus call the loss of Equation
10 the KLIEP loss. The unconstrained objective was also
considered in du Plessis & Sugiyama (2012).

The LSIF loss. Consider the loss

`�1(v) = 1
/2 · v

2 and `1(v) = �v, (12)

with corresponding risk

L(s;D, `) = EX⇠P

[�s(X)] + EX⇠Q

⇥
1
/2 · s(X)2

⇤
. (13)

The problem min

s

L(s;D, `) is exactly that considered by
the LSIF method of Kanamori et al. (2009); we thus call the
loss of Equation 12 the LSIF loss. One appealing property
of the LSIF loss is that when working with linear scorers
s : x 7! hw, xi, the risk has a closed form minimiser

w

⇤
=

�
EX⇠Q

⇥
XXT

⇤��1
· EX⇠P

[X] . (14)

To analyse the above, consider the family of power losses
suggested in Sugiyama et al. (2012a, Section 3.4),

`�1(v) =
v

1+↵

� 1

1 + ↵

and `1(v) =
1� v

↵

↵

(15)

1Appendix A covers the more cumbersome case ⇡ 6= 1/2.

for ↵ 2 (0, 1]. As ↵ ! 0

+, we get the (translated) KLIEP
loss for a = 1; for ↵ = 1, we get the (translated) LSIF
loss. It is easy to check that all these losses are strictly
proper composite, with link  dr.
Lemma 1. For any ↵ 2 (0, 1], the power loss of Equation
15 is strictly proper composite with link  dr. At the limit
↵ ! 0

+, the KLIEP loss with parameter a > 0 of Equation
10 is also strictly proper composite with link a

�1
· dr.

Proof. Since ` is differentiable, with

`

0
�1(v) = v

↵ and `

0
1(v) = �v

↵�1
,

by Equation 1 it is strictly proper composite with link
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A similar argument applies to the general KLIEP loss.

The above interpretation of the KLIEP and LSIF losses in
terms of CPE evinces why they are suitable for DRE: the
optimal scorer for each is exactly the true density ratio.

4.2. Estimating density ratios with any link

While the previous section focussed on DRE using the link
 dr, nothing prohibits the use of an arbitrary link  . Sup-
pose we have a proper composite ` with link , and Bayes-
optimal scorer s⇤ =  � ⌘. Then, by Equation 7,

(8x 2 X) r(x) =
1� ⇡

⇡

·

 

�1
(s

⇤
(x))

1� 

�1
(s

⇤
(x))

. (16)

Given an arbitrary scorer s with low `-risk, it is natural then
to use the density ratio estimator

r̂(x)

·

=

1� ⇡

⇡

·

⌘̂(x)

1� ⌘̂(x)

, (17)

recalling that ⌘̂ =  

�1
� s. For example, with the lo-

gistic loss, for which  �1
(v) = (1 + e

�v

)

�1, we have
r̂(x) = e

s(x) when ⇡ = 1/2. Precisely such an estimate
was previously considered in Bickel et al. (2009, Section
7) in the context of covariate shift adaptation.

The above appears to definitively establish the suitability of
CPE losses for DRE. However, while Equation 16 justifies
the CPE loss minimisation approach asymptotically, what
can be guaranteed about the quality of an imperfect esti-
mate r̂ as in Equation 17? This issue is more subtle, and is
the subject of our next section.

5. A Bregman minimisation view of DRE
Recall from Equation 3 that proper composite loss minimi-
sation is equivalent to minimising a specific Bregman di-
vergence between ⌘̂ and ⌘. Since r and ⌘ are related by
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�1
· dr.

Proof. Since ` is differentiable, with

`

0
�1(v) = v

↵ and `

0
1(v) = �v

↵�1
,

by Equation 1 it is strictly proper composite with link

 

�1
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✓
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1

v

◆�1

=  

�1
dr (v).

A similar argument applies to the general KLIEP loss.

The above interpretation of the KLIEP and LSIF losses in
terms of CPE evinces why they are suitable for DRE: the
optimal scorer for each is exactly the true density ratio.

4.2. Estimating density ratios with any link

While the previous section focussed on DRE using the link
 dr, nothing prohibits the use of an arbitrary link  . Sup-
pose we have a proper composite ` with link , and Bayes-
optimal scorer s⇤ =  � ⌘. Then, by Equation 7,

(8x 2 X) r(x) =
1� ⇡

⇡

·

 

�1
(s

⇤
(x))

1� 

�1
(s

⇤
(x))

. (16)

Given an arbitrary scorer s with low `-risk, it is natural then
to use the density ratio estimator

r̂(x)

·

=

1� ⇡

⇡

·

⌘̂(x)

1� ⌘̂(x)

, (17)

recalling that ⌘̂ =  

�1
� s. For example, with the lo-

gistic loss, for which  �1
(v) = (1 + e

�v

)

�1, we have
r̂(x) = e

s(x) when ⇡ = 1/2. Precisely such an estimate
was previously considered in Bickel et al. (2009, Section
7) in the context of covariate shift adaptation.

The above appears to definitively establish the suitability of
CPE losses for DRE. However, while Equation 16 justifies
the CPE loss minimisation approach asymptotically, what
can be guaranteed about the quality of an imperfect esti-
mate r̂ as in Equation 17? This issue is more subtle, and is
the subject of our next section.

5. A Bregman minimisation view of DRE
Recall from Equation 3 that proper composite loss minimi-
sation is equivalent to minimising a specific Bregman di-
vergence between ⌘̂ and ⌘. Since r and ⌘ are related by

More generally, we could minimise a CPE loss ℓ, and estimate 

Proof is via integral representation of Bregman divergences. 
This implies that for any strictly proper composite ℓ, 

Designing new CPE losses for DRE 
Any CPE regret may be equivalently written: 
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a monotone transform (Equation 7), in applications where
only the ordering of the density ratio is important, this fact
would suffice as guarantee of the quality of r̂. In covari-
ate shift modelling, however, one requires a good estimate
of r, rather than some monotone transformation of r (other
than multipication by a positive scalar). For this applica-
tion, Equation 3 by itself does not suffice; further, prima
facie, one might be concerned that errors in the estimate
⌘̂ are magnified uncontrollably when passed through the
transform u/(1� u) to construct r̂.

Fortunately, we can show that minimisation of (essentially)
any strictly proper composite ` results in a good r̂ in a pre-
cise sense: the procedure is equivalent to minimising a spe-
cific Bregman divergence of r̂ to the true r.

5.1. A novel Bregman identity

To quantify the quality of the density ratio estimates r̂, the
most natural way to proceed is to re-express Equation 3 in
terms of r rather than ⌘. But how do we do this without
appealing to specific properties of f or  ? The answer is
provided by the following Bregman identity, which to our
knowledge is novel, and may be of independent interest.
Lemma 2. For any twice differentiable convex f : [0, 1] !
R with Bregman divergence B

f

(·, ·),

(8x, y 2 [0,1))B

f

✓
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◆
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where f
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: [0,1) ! R is given by
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✓
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(18)

Proof. By (Reid & Williamson, 2009, Equation 12),

B

f
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00
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Applying this to the LHS,
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Employing the substitution z =
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, with dz =
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where the last line is since by definition of f�,
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Remark 1. One might think to generalise Lemma 2 using a
different change of variable in the integral above; however,
this in general will not yield another Bregman divergence.
Remark 2. f

� is closely related to the perspective trans-
form f

⇧
: x 7! x · f(1/x) of a convex function.

Remark 3. The somewhat awkward form of the arguments
in the LHS is to simplify the results in the next section.

5.2. Proper losses minimise a Bregman divergence to r

Using Lemma 2, we can establish that proper composite
loss minimisation is equivalent to minimising a Bregman
divergence to the true density ratio.
Proposition 3. Pick any strictly proper composite ` with
twice differentiable negative Bayes risk f . Then, for any
distribution D = (P,Q,

1
/2),

reg(s;D, `) =

1
/2 · EX⇠Q

⇥
B

f

�
(r(X), r̂(X))

⇤
,

for r =  dr � ⌘, r̂ =  dr � ⌘̂, and f

� per Equation 18.

Proof. Letting R = 2 · reg(s;D, `), by Equation 3,

R = 2 · EX⇠M

[B

f

(⌘(X), ⌘̂(X))]

= EX⇠P

[B

f

(⌘(X), ⌘̂(X))] + EX⇠Q

[B

f

(⌘(X), ⌘̂(X))]

= EX⇠Q

[(1 + r(X)) ·B
f

(⌘(X), ⌘̂(X))] ,

where the last line is because EX⇠P

[g(X)] =

EX⇠Q

[r(X) · g(X)]. Now, expressing Lemma 2 as

(1 + x) ·B

f

�
 

�1
dr (a), 

�1
dr (b)

�
= B

f

�
(a, b),

and noting that by Equation 7, ⌘ =  

�1
dr � r, the result

follows by picking a = r(X) and b = r̂(X).

Remark 4. See Appendix B for an alternate proof using
the connection of proper losses to f -divergences (Reid &
Williamson, 2011), and Appendix D for a discussion of
how the proper loss view sheds some light on existing inter-
pretations of KLIEP and LSIF in terms of f -divergences.
Remark 5. The expectation in Equation 3 is over the
marginal M , but above, it is over the class-conditional
Q. This is intuitive for covariate shift adaptation (§2.3):
here, we estimate the class-conditional density ratio for
D = (MTe,MTr, 1/2), and wish this to be accurate on av-
erage for the reweighed training instances i.e. on average
under the “negative” class-conditional MTr.
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a monotone transform (Equation 7), in applications where
only the ordering of the density ratio is important, this fact
would suffice as guarantee of the quality of r̂. In covari-
ate shift modelling, however, one requires a good estimate
of r, rather than some monotone transformation of r (other
than multipication by a positive scalar). For this applica-
tion, Equation 3 by itself does not suffice; further, prima
facie, one might be concerned that errors in the estimate
⌘̂ are magnified uncontrollably when passed through the
transform u/(1� u) to construct r̂.

Fortunately, we can show that minimisation of (essentially)
any strictly proper composite ` results in a good r̂ in a pre-
cise sense: the procedure is equivalent to minimising a spe-
cific Bregman divergence of r̂ to the true r.

5.1. A novel Bregman identity

To quantify the quality of the density ratio estimates r̂, the
most natural way to proceed is to re-express Equation 3 in
terms of r rather than ⌘. But how do we do this without
appealing to specific properties of f or  ? The answer is
provided by the following Bregman identity, which to our
knowledge is novel, and may be of independent interest.
Lemma 2. For any twice differentiable convex f : [0, 1] !
R with Bregman divergence B
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Remark 1. One might think to generalise Lemma 2 using a
different change of variable in the integral above; however,
this in general will not yield another Bregman divergence.
Remark 2. f

� is closely related to the perspective trans-
form f

⇧
: x 7! x · f(1/x) of a convex function.

Remark 3. The somewhat awkward form of the arguments
in the LHS is to simplify the results in the next section.

5.2. Proper losses minimise a Bregman divergence to r

Using Lemma 2, we can establish that proper composite
loss minimisation is equivalent to minimising a Bregman
divergence to the true density ratio.
Proposition 3. Pick any strictly proper composite ` with
twice differentiable negative Bayes risk f . Then, for any
distribution D = (P,Q,

1
/2),

reg(s;D, `) =

1
/2 · EX⇠Q

⇥
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f
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(r(X), r̂(X))

⇤
,

for r =  dr � ⌘, r̂ =  dr � ⌘̂, and f

� per Equation 18.

Proof. Letting R = 2 · reg(s;D, `), by Equation 3,

R = 2 · EX⇠M

[B

f

(⌘(X), ⌘̂(X))]
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where the last line is because EX⇠P

[g(X)] =
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[r(X) · g(X)]. Now, expressing Lemma 2 as

(1 + x) ·B
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(a, b),

and noting that by Equation 7, ⌘ =  

�1
dr � r, the result

follows by picking a = r(X) and b = r̂(X).

Remark 4. See Appendix B for an alternate proof using
the connection of proper losses to f -divergences (Reid &
Williamson, 2011), and Appendix D for a discussion of
how the proper loss view sheds some light on existing inter-
pretations of KLIEP and LSIF in terms of f -divergences.
Remark 5. The expectation in Equation 3 is over the
marginal M , but above, it is over the class-conditional
Q. This is intuitive for covariate shift adaptation (§2.3):
here, we estimate the class-conditional density ratio for
D = (MTe,MTr, 1/2), and wish this to be accurate on av-
erage for the reweighed training instances i.e. on average
under the “negative” class-conditional MTr.

Lemma. KLIEP and LSIF are proper composite with link  
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4. DRE via CPE loss minimisation
We now show how Equation 7 may be used to re-interpret
existing DRE approaches as implicitly performing CPE, as
well as motivate performing DRE via a general CPE loss.
In what follows, we assume that ⇡ = 1/2

1, so that

 dr(u) =
u

1� u

, (9)

with  �1
dr (v) = v/(1 + v) for v � 0.

4.1. Estimating density ratios with the  dr link

To estimate r, Equation 7 suggests that we minimise the
`-risk for proper composite ` with link  dr, as the corre-
sponding Bayes-optimal scorer is exactly s

⇤
=  dr�⌘ = r.

Given a scorer s with low `-risk, we can then treat r̂ = s

as an estimate of the density ratio. We now see how two
existing approaches to DRE do precisely this.

The KLIEP loss. Consider the loss

`�1(v) = a · v and `1(v) = � log v (10)

for a > 0, with corresponding risk

L(s;D, `) = EX⇠P

[� log s(X)] + a · EX⇠Q

[s(X)] (11)

defined for any s 2 S ✓ RX
+. For suitable a, finding

min

s2S L(s;D, `) is equivalent to the constrained problem

min

s2S
EX⇠P

[� log s(X)] : EX⇠Q

[s(X)] = 1,

which is exactly the objective of the KLIEP method of
Sugiyama et al. (2008); we thus call the loss of Equation
10 the KLIEP loss. The unconstrained objective was also
considered in du Plessis & Sugiyama (2012).

The LSIF loss. Consider the loss

`�1(v) = 1
/2 · v

2 and `1(v) = �v, (12)

with corresponding risk

L(s;D, `) = EX⇠P

[�s(X)] + EX⇠Q

⇥
1
/2 · s(X)2

⇤
. (13)

The problem min

s

L(s;D, `) is exactly that considered by
the LSIF method of Kanamori et al. (2009); we thus call the
loss of Equation 12 the LSIF loss. One appealing property
of the LSIF loss is that when working with linear scorers
s : x 7! hw, xi, the risk has a closed form minimiser

w

⇤
=

�
EX⇠Q

⇥
XXT

⇤��1
· EX⇠P

[X] . (14)

To analyse the above, consider the family of power losses
suggested in Sugiyama et al. (2012a, Section 3.4),

`�1(v) =
v

1+↵

� 1

1 + ↵

and `1(v) =
1� v

↵

↵

(15)

1Appendix A covers the more cumbersome case ⇡ 6= 1/2.

for ↵ 2 (0, 1]. As ↵ ! 0

+, we get the (translated) KLIEP
loss for a = 1; for ↵ = 1, we get the (translated) LSIF
loss. It is easy to check that all these losses are strictly
proper composite, with link  dr.
Lemma 1. For any ↵ 2 (0, 1], the power loss of Equation
15 is strictly proper composite with link  dr. At the limit
↵ ! 0

+, the KLIEP loss with parameter a > 0 of Equation
10 is also strictly proper composite with link a

�1
· dr.

Proof. Since ` is differentiable, with
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,

by Equation 1 it is strictly proper composite with link
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A similar argument applies to the general KLIEP loss.

The above interpretation of the KLIEP and LSIF losses in
terms of CPE evinces why they are suitable for DRE: the
optimal scorer for each is exactly the true density ratio.

4.2. Estimating density ratios with any link

While the previous section focussed on DRE using the link
 dr, nothing prohibits the use of an arbitrary link  . Sup-
pose we have a proper composite ` with link , and Bayes-
optimal scorer s⇤ =  � ⌘. Then, by Equation 7,

(8x 2 X) r(x) =
1� ⇡

⇡

·
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⇤
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Given an arbitrary scorer s with low `-risk, it is natural then
to use the density ratio estimator

r̂(x)

·

=

1� ⇡

⇡

·

⌘̂(x)

1� ⌘̂(x)

, (17)

recalling that ⌘̂ =  

�1
� s. For example, with the lo-

gistic loss, for which  �1
(v) = (1 + e

�v

)

�1, we have
r̂(x) = e

s(x) when ⇡ = 1/2. Precisely such an estimate
was previously considered in Bickel et al. (2009, Section
7) in the context of covariate shift adaptation.

The above appears to definitively establish the suitability of
CPE losses for DRE. However, while Equation 16 justifies
the CPE loss minimisation approach asymptotically, what
can be guaranteed about the quality of an imperfect esti-
mate r̂ as in Equation 17? This issue is more subtle, and is
the subject of our next section.

5. A Bregman minimisation view of DRE
Recall from Equation 3 that proper composite loss minimi-
sation is equivalent to minimising a specific Bregman di-
vergence between ⌘̂ and ⌘. Since r and ⌘ are related by

Class-probability 
estimation (CPE): estimate 
(from samples) probability 
of instance being +ve. 

For instance space X, let D 
be distribution over X x {± 1}, 
with class-conditionals P, Q,  
class-probability function η. 

DRE
: 

CPE: 

Existing DRE methods as CPE losses 

To link approximate solutions for each, we need to recall: 
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2. Background and notation
We review some background material and fix notation.

2.1. Learning from binary labels

Denote by D a distribution over X ⇥ {±1}, with random
variables (X,Y) ⇠ D. Any D may be decomposed into
class-conditionals (P,Q) = (P(X | Y = 1),P(X | Y =

�1)) and base rate ⇡ = P(Y = 1), or into marginal M =

P(X) and class-probability function ⌘ : x 7! P(Y = 1 |

X = x). We will write D = (P,Q,⇡) or D = (M, ⌘). The
densities of P,Q are assumed to exist and denoted by p, q.

A loss is any ` : {±1}⇥ R ! R; we interchangeably write
`(y, ·) as `

y

(·). A scorer is any s : X ! R. The `-risk for
a scorer s wrt D is L(s;D, `)

·

= E(X,Y)⇠D [`(Y, s(X))]; the
Bayes-optimal scorer is s⇤ ·

= argmin

s

L(s;D, `).

2.2. Class-probability estimation

Class-probability estimation (CPE) is concerned with in-
ferring ⌘. This may be achieved via a suitable loss func-
tion. A loss ` is strictly proper composite with (invert-
ible) link function  : [0, 1] ! R if the Bayes-optimal
scorer for the `-risk is s⇤ =  � ⌘ (Buja et al., 2005; Reid
& Williamson, 2010). Examples include the logistic loss
`(y, v) = log(1 + e

�yv

) with  (p) = log p/(1 � p), ex-
ponential loss `(y, v) = e

�yv (as in AdaBoost) and square
hinge loss `(y, v) = max(0, 1 � yv)

2 (as in L2-SVMs).
If ` is differentiable, it is strictly proper composite with in-
vertible link iff (Reid & Williamson, 2010, Corollary 12)

 

�1
(v) =

�
1� `

0
1(v)/`

0
�1(v)

��1
. (1)

Given a strictly proper composite `, we call �

·

= ` �

 : [0, 1] ! R the underlying proper loss for `. The nega-
tive conditional Bayes risk f : [0, 1] ! R of ` is then

f(u)

·

= �u · �1(u)� (1� u) · ��1(u). (2)

Given a scorer s with low `-risk, we can regard ⌘̂

·

=  

�1
�s

to be an estimate of ⌘. The quality of this estimate can be
quantified: the regret or excess risk of a scorer s over the
Bayes-optimal is (Reid & Williamson, 2010, Corollary 9,
Corollary 13)

reg(s;D, `)

·

= L(s;D, `)� L( � ⌘;D, `)

= EX⇠M

[B

f

(⌘(X), ⌘̂(X))] (3)

= EX⇠M

Z 1

0
w(c) · reg

c

(⌘(X), ⌘̂(X)) dc

�
,

(4)

where B

f

is a Bregman divergence with generator f , the
weight function w = f

00, and reg

c

(⌘, ⌘̂)

·

= |⌘ � c| · J(⌘ �

c) · (⌘̂ � c) < 0K the cost-sensitive pointwise regret. Intu-
itively, Equation 4 says that a loss focusses on accurately
modelling the range of ⌘ values for which w(·) is large.
For example, logistic loss has as f the negative Shannon
entropy, and so seeks an ⌘̂ with minimal KL-divergence to
⌘; further, it has weight function w(c) = (c · (1� c))

�1.

2.3. Covariate shift adaptation

In covariate shift problems (Sugiyama & Kawanabe, 2012),
we have train and test distributions DTr and DTe with
⌘Tr = ⌘Te, but MTr 6= MTe. Our goal remains to min-
imise L(s;DTe, `). This is a canonical application for DRE
because the importance weighting identity

L(s;DTe, `) = EX⇠M

⇥
r(X) · EY⇠⌘(X) [`(Y, s(X))]

⇤
(5)

for density ratio r = mTe/mTr of the corresponding
marginal densities implies that if we estimate r, we can
simply re-weight training instances accordingly so as to
adapt to the test distribution (Shimodaira, 2000). (On finite
samples, importance weighting may actually bring little or
negative improvement, and thus covariate shift adaptation
may require more than simply estimating r (Cortes et al.,
2010; Reddi et al., 2015; Swaminathan & Joachims, 2015);
this is however beyond the scope of the present paper.)

3. Linking density ratios to class-probabilities
Suppose we wish to estimate a density ratio r = p/q, given
samples from the respective densities. One can view these
samples as arising from a distribution D over binary labels,
where p and q are the densities of the class-conditional dis-
tributions, and ⇡ is the relative frequency of samples from
the densities. (For the covariate shift problem of §2.3, such
a D would encode the discrimination between training and
testing instances with p = mTe and q = mTr.)

The above suggests that methods for learning from binary
labels could be used to estimate r. Indeed, as in Bickel
et al. (2009); Smola (2010), Bayes’ rule implies:

(8x 2 X)
⌘(x)

1� ⌘(x)

=

p(x)

q(x)

·

⇡

1� ⇡

, (6)

where P(X = x) cancels for both terms in the LHS; thus,

(8x 2 X) r(x) ·

=

p(x)

q(x)

=  dr (⌘(x)) , (7)

for the link function

 dr(u)
·

=

1� ⇡

⇡

·

u

1� u

. (8)

Intuitively, this elementary fact suggests one should be able
to uses CPE losses to perform DRE, and vice-versa. The
rest of the paper makes this intuition precise. We devote
the next few sections to the usage of CPE losses for DRE,
and then return to the usage of DRE losses for CPE in §7.
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2. Background and notation
We review some background material and fix notation.

2.1. Learning from binary labels

Denote by D a distribution over X ⇥ {±1}, with random
variables (X,Y) ⇠ D. Any D may be decomposed into
class-conditionals (P,Q) = (P(X | Y = 1),P(X | Y =

�1)) and base rate ⇡ = P(Y = 1), or into marginal M =

P(X) and class-probability function ⌘ : x 7! P(Y = 1 |

X = x). We will write D = (P,Q,⇡) or D = (M, ⌘). The
densities of P,Q are assumed to exist and denoted by p, q.

A loss is any ` : {±1}⇥ R ! R; we interchangeably write
`(y, ·) as `

y

(·). A scorer is any s : X ! R. The `-risk for
a scorer s wrt D is L(s;D, `)

·

= E(X,Y)⇠D [`(Y, s(X))]; the
Bayes-optimal scorer is s⇤ ·

= argmin

s

L(s;D, `).

2.2. Class-probability estimation

Class-probability estimation (CPE) is concerned with in-
ferring ⌘. This may be achieved via a suitable loss func-
tion. A loss ` is strictly proper composite with (invert-
ible) link function  : [0, 1] ! R if the Bayes-optimal
scorer for the `-risk is s⇤ =  � ⌘ (Buja et al., 2005; Reid
& Williamson, 2010). Examples include the logistic loss
`(y, v) = log(1 + e

�yv

) with  (p) = log p/(1 � p), ex-
ponential loss `(y, v) = e

�yv (as in AdaBoost) and square
hinge loss `(y, v) = max(0, 1 � yv)

2 (as in L2-SVMs).
If ` is differentiable, it is strictly proper composite with in-
vertible link iff (Reid & Williamson, 2010, Corollary 12)
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c) · (⌘̂ � c) < 0K the cost-sensitive pointwise regret. Intu-
itively, Equation 4 says that a loss focusses on accurately
modelling the range of ⌘ values for which w(·) is large.
For example, logistic loss has as f the negative Shannon
entropy, and so seeks an ⌘̂ with minimal KL-divergence to
⌘; further, it has weight function w(c) = (c · (1� c))

�1.

2.3. Covariate shift adaptation

In covariate shift problems (Sugiyama & Kawanabe, 2012),
we have train and test distributions DTr and DTe with
⌘Tr = ⌘Te, but MTr 6= MTe. Our goal remains to min-
imise L(s;DTe, `). This is a canonical application for DRE
because the importance weighting identity
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r(X) · EY⇠⌘(X) [`(Y, s(X))]
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for density ratio r = mTe/mTr of the corresponding
marginal densities implies that if we estimate r, we can
simply re-weight training instances accordingly so as to
adapt to the test distribution (Shimodaira, 2000). (On finite
samples, importance weighting may actually bring little or
negative improvement, and thus covariate shift adaptation
may require more than simply estimating r (Cortes et al.,
2010; Reddi et al., 2015; Swaminathan & Joachims, 2015);
this is however beyond the scope of the present paper.)

3. Linking density ratios to class-probabilities
Suppose we wish to estimate a density ratio r = p/q, given
samples from the respective densities. One can view these
samples as arising from a distribution D over binary labels,
where p and q are the densities of the class-conditional dis-
tributions, and ⇡ is the relative frequency of samples from
the densities. (For the covariate shift problem of §2.3, such
a D would encode the discrimination between training and
testing instances with p = mTe and q = mTr.)

The above suggests that methods for learning from binary
labels could be used to estimate r. Indeed, as in Bickel
et al. (2009); Smola (2010), Bayes’ rule implies:
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to uses CPE losses to perform DRE, and vice-versa. The
rest of the paper makes this intuition precise. We devote
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and then return to the usage of DRE losses for CPE in §7.
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about the quality of such an estimate? 
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4. DRE via CPE loss minimisation
We now show how Equation 7 may be used to re-interpret
existing DRE approaches as implicitly performing CPE, as
well as motivate performing DRE via a general CPE loss.
In what follows, we assume that ⇡ = 1/2

1, so that
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, (9)

with  �1
dr (v) = v/(1 + v) for v � 0.

4.1. Estimating density ratios with the  dr link

To estimate r, Equation 7 suggests that we minimise the
`-risk for proper composite ` with link  dr, as the corre-
sponding Bayes-optimal scorer is exactly s

⇤
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Given a scorer s with low `-risk, we can then treat r̂ = s

as an estimate of the density ratio. We now see how two
existing approaches to DRE do precisely this.
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which is exactly the objective of the KLIEP method of
Sugiyama et al. (2008); we thus call the loss of Equation
10 the KLIEP loss. The unconstrained objective was also
considered in du Plessis & Sugiyama (2012).

The LSIF loss. Consider the loss
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L(s;D, `) is exactly that considered by
the LSIF method of Kanamori et al. (2009); we thus call the
loss of Equation 12 the LSIF loss. One appealing property
of the LSIF loss is that when working with linear scorers
s : x 7! hw, xi, the risk has a closed form minimiser
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To analyse the above, consider the family of power losses
suggested in Sugiyama et al. (2012a, Section 3.4),
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1Appendix A covers the more cumbersome case ⇡ 6= 1/2.

for ↵ 2 (0, 1]. As ↵ ! 0

+, we get the (translated) KLIEP
loss for a = 1; for ↵ = 1, we get the (translated) LSIF
loss. It is easy to check that all these losses are strictly
proper composite, with link  dr.
Lemma 1. For any ↵ 2 (0, 1], the power loss of Equation
15 is strictly proper composite with link  dr. At the limit
↵ ! 0

+, the KLIEP loss with parameter a > 0 of Equation
10 is also strictly proper composite with link a

�1
· dr.

Proof. Since ` is differentiable, with
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,

by Equation 1 it is strictly proper composite with link
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A similar argument applies to the general KLIEP loss.

The above interpretation of the KLIEP and LSIF losses in
terms of CPE evinces why they are suitable for DRE: the
optimal scorer for each is exactly the true density ratio.

4.2. Estimating density ratios with any link

While the previous section focussed on DRE using the link
 dr, nothing prohibits the use of an arbitrary link  . Sup-
pose we have a proper composite ` with link , and Bayes-
optimal scorer s⇤ =  � ⌘. Then, by Equation 7,
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Given an arbitrary scorer s with low `-risk, it is natural then
to use the density ratio estimator

r̂(x)
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, (17)

recalling that ⌘̂ =  

�1
� s. For example, with the lo-

gistic loss, for which  �1
(v) = (1 + e

�v

)

�1, we have
r̂(x) = e

s(x) when ⇡ = 1/2. Precisely such an estimate
was previously considered in Bickel et al. (2009, Section
7) in the context of covariate shift adaptation.

The above appears to definitively establish the suitability of
CPE losses for DRE. However, while Equation 16 justifies
the CPE loss minimisation approach asymptotically, what
can be guaranteed about the quality of an imperfect esti-
mate r̂ as in Equation 17? This issue is more subtle, and is
the subject of our next section.

5. A Bregman minimisation view of DRE
Recall from Equation 3 that proper composite loss minimi-
sation is equivalent to minimising a specific Bregman di-
vergence between ⌘̂ and ⌘. Since r and ⌘ are related by

Basic property of CPE losses: the regret or excess risk is: 
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2. Background and notation
We review some background material and fix notation.

2.1. Learning from binary labels

Denote by D a distribution over X ⇥ {±1}, with random
variables (X,Y) ⇠ D. Any D may be decomposed into
class-conditionals (P,Q) = (P(X | Y = 1),P(X | Y =

�1)) and base rate ⇡ = P(Y = 1), or into marginal M =

P(X) and class-probability function ⌘ : x 7! P(Y = 1 |

X = x). We will write D = (P,Q,⇡) or D = (M, ⌘). The
densities of P,Q are assumed to exist and denoted by p, q.

A loss is any ` : {±1}⇥ R ! R; we interchangeably write
`(y, ·) as `

y

(·). A scorer is any s : X ! R. The `-risk for
a scorer s wrt D is L(s;D, `)
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= E(X,Y)⇠D [`(Y, s(X))]; the
Bayes-optimal scorer is s⇤ ·

= argmin
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L(s;D, `).

2.2. Class-probability estimation

Class-probability estimation (CPE) is concerned with in-
ferring ⌘. This may be achieved via a suitable loss func-
tion. A loss ` is strictly proper composite with (invert-
ible) link function  : [0, 1] ! R if the Bayes-optimal
scorer for the `-risk is s⇤ =  � ⌘ (Buja et al., 2005; Reid
& Williamson, 2010). Examples include the logistic loss
`(y, v) = log(1 + e

�yv

) with  (p) = log p/(1 � p), ex-
ponential loss `(y, v) = e

�yv (as in AdaBoost) and square
hinge loss `(y, v) = max(0, 1 � yv)

2 (as in L2-SVMs).
If ` is differentiable, it is strictly proper composite with in-
vertible link iff (Reid & Williamson, 2010, Corollary 12)
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entropy, and so seeks an ⌘̂ with minimal KL-divergence to
⌘; further, it has weight function w(c) = (c · (1� c))
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2.3. Covariate shift adaptation

In covariate shift problems (Sugiyama & Kawanabe, 2012),
we have train and test distributions DTr and DTe with
⌘Tr = ⌘Te, but MTr 6= MTe. Our goal remains to min-
imise L(s;DTe, `). This is a canonical application for DRE
because the importance weighting identity
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⇥
r(X) · EY⇠⌘(X) [`(Y, s(X))]
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for density ratio r = mTe/mTr of the corresponding
marginal densities implies that if we estimate r, we can
simply re-weight training instances accordingly so as to
adapt to the test distribution (Shimodaira, 2000). (On finite
samples, importance weighting may actually bring little or
negative improvement, and thus covariate shift adaptation
may require more than simply estimating r (Cortes et al.,
2010; Reddi et al., 2015; Swaminathan & Joachims, 2015);
this is however beyond the scope of the present paper.)

3. Linking density ratios to class-probabilities
Suppose we wish to estimate a density ratio r = p/q, given
samples from the respective densities. One can view these
samples as arising from a distribution D over binary labels,
where p and q are the densities of the class-conditional dis-
tributions, and ⇡ is the relative frequency of samples from
the densities. (For the covariate shift problem of §2.3, such
a D would encode the discrimination between training and
testing instances with p = mTe and q = mTr.)

The above suggests that methods for learning from binary
labels could be used to estimate r. Indeed, as in Bickel
et al. (2009); Smola (2010), Bayes’ rule implies:
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Intuitively, this elementary fact suggests one should be able
to uses CPE losses to perform DRE, and vice-versa. The
rest of the paper makes this intuition precise. We devote
the next few sections to the usage of CPE losses for DRE,
and then return to the usage of DRE losses for CPE in §7.
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densities of P,Q are assumed to exist and denoted by p, q.

A loss is any ` : {±1}⇥ R ! R; we interchangeably write
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ferring ⌘. This may be achieved via a suitable loss func-
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adapt to the test distribution (Shimodaira, 2000). (On finite
samples, importance weighting may actually bring little or
negative improvement, and thus covariate shift adaptation
may require more than simply estimating r (Cortes et al.,
2010; Reddi et al., 2015; Swaminathan & Joachims, 2015);
this is however beyond the scope of the present paper.)

3. Linking density ratios to class-probabilities
Suppose we wish to estimate a density ratio r = p/q, given
samples from the respective densities. One can view these
samples as arising from a distribution D over binary labels,
where p and q are the densities of the class-conditional dis-
tributions, and ⇡ is the relative frequency of samples from
the densities. (For the covariate shift problem of §2.3, such
a D would encode the discrimination between training and
testing instances with p = mTe and q = mTr.)

The above suggests that methods for learning from binary
labels could be used to estimate r. Indeed, as in Bickel
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for certain loss-dependent f and Bregman divergence Bf. This 
gives a clear sense in which we accurately model η. 
 
We can extend this to DRE via: 
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a monotone transform (Equation 7), in applications where
only the ordering of the density ratio is important, this fact
would suffice as guarantee of the quality of r̂. In covari-
ate shift modelling, however, one requires a good estimate
of r, rather than some monotone transformation of r (other
than multipication by a positive scalar). For this applica-
tion, Equation 3 by itself does not suffice; further, prima
facie, one might be concerned that errors in the estimate
⌘̂ are magnified uncontrollably when passed through the
transform u/(1� u) to construct r̂.

Fortunately, we can show that minimisation of (essentially)
any strictly proper composite ` results in a good r̂ in a pre-
cise sense: the procedure is equivalent to minimising a spe-
cific Bregman divergence of r̂ to the true r.

5.1. A novel Bregman identity

To quantify the quality of the density ratio estimates r̂, the
most natural way to proceed is to re-express Equation 3 in
terms of r rather than ⌘. But how do we do this without
appealing to specific properties of f or  ? The answer is
provided by the following Bregman identity, which to our
knowledge is novel, and may be of independent interest.
Lemma 2. For any twice differentiable convex f : [0, 1] !
R with Bregman divergence B

f
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Proof. By (Reid & Williamson, 2009, Equation 12),
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Remark 1. One might think to generalise Lemma 2 using a
different change of variable in the integral above; however,
this in general will not yield another Bregman divergence.
Remark 2. f

� is closely related to the perspective trans-
form f

⇧
: x 7! x · f(1/x) of a convex function.

Remark 3. The somewhat awkward form of the arguments
in the LHS is to simplify the results in the next section.

5.2. Proper losses minimise a Bregman divergence to r

Using Lemma 2, we can establish that proper composite
loss minimisation is equivalent to minimising a Bregman
divergence to the true density ratio.
Proposition 3. Pick any strictly proper composite ` with
twice differentiable negative Bayes risk f . Then, for any
distribution D = (P,Q,

1
/2),

reg(s;D, `) =

1
/2 · EX⇠Q
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f
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(r(X), r̂(X))

⇤
,

for r =  dr � ⌘, r̂ =  dr � ⌘̂, and f

� per Equation 18.

Proof. Letting R = 2 · reg(s;D, `), by Equation 3,
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where the last line is because EX⇠P
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[r(X) · g(X)]. Now, expressing Lemma 2 as
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(a, b),

and noting that by Equation 7, ⌘ =  

�1
dr � r, the result

follows by picking a = r(X) and b = r̂(X).

Remark 4. See Appendix B for an alternate proof using
the connection of proper losses to f -divergences (Reid &
Williamson, 2011), and Appendix D for a discussion of
how the proper loss view sheds some light on existing inter-
pretations of KLIEP and LSIF in terms of f -divergences.
Remark 5. The expectation in Equation 3 is over the
marginal M , but above, it is over the class-conditional
Q. This is intuitive for covariate shift adaptation (§2.3):
here, we estimate the class-conditional density ratio for
D = (MTe,MTr, 1/2), and wish this to be accurate on av-
erage for the reweighed training instances i.e. on average
under the “negative” class-conditional MTr.
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where  
accurately model r. This justifies using CPE uses for DRE; but 
we can also adopt theory from the former to help in the latter. 
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2. Background and notation
We review some background material and fix notation.

2.1. Learning from binary labels

Denote by D a distribution over X ⇥ {±1}, with random
variables (X,Y) ⇠ D. Any D may be decomposed into
class-conditionals (P,Q) = (P(X | Y = 1),P(X | Y =

�1)) and base rate ⇡ = P(Y = 1), or into marginal M =

P(X) and class-probability function ⌘ : x 7! P(Y = 1 |

X = x). We will write D = (P,Q,⇡) or D = (M, ⌘). The
densities of P,Q are assumed to exist and denoted by p, q.

A loss is any ` : {±1}⇥ R ! R; we interchangeably write
`(y, ·) as `

y

(·). A scorer is any s : X ! R. The `-risk for
a scorer s wrt D is L(s;D, `)

·

= E(X,Y)⇠D [`(Y, s(X))]; the
Bayes-optimal scorer is s⇤ ·

= argmin

s

L(s;D, `).

2.2. Class-probability estimation

Class-probability estimation (CPE) is concerned with in-
ferring ⌘. This may be achieved via a suitable loss func-
tion. A loss ` is strictly proper composite with (invert-
ible) link function  : [0, 1] ! R if the Bayes-optimal
scorer for the `-risk is s⇤ =  � ⌘ (Buja et al., 2005; Reid
& Williamson, 2010). Examples include the logistic loss
`(y, v) = log(1 + e

�yv

) with  (p) = log p/(1 � p), ex-
ponential loss `(y, v) = e

�yv (as in AdaBoost) and square
hinge loss `(y, v) = max(0, 1 � yv)

2 (as in L2-SVMs).
If ` is differentiable, it is strictly proper composite with in-
vertible link iff (Reid & Williamson, 2010, Corollary 12)

 

�1
(v) =

�
1� `

0
1(v)/`

0
�1(v)

��1
. (1)

Given a strictly proper composite `, we call �

·

= ` �

 : [0, 1] ! R the underlying proper loss for `. The nega-
tive conditional Bayes risk f : [0, 1] ! R of ` is then

f(u)

·

= �u · �1(u)� (1� u) · ��1(u). (2)

Given a scorer s with low `-risk, we can regard ⌘̂

·

=  

�1
�s

to be an estimate of ⌘. The quality of this estimate can be
quantified: the regret or excess risk of a scorer s over the
Bayes-optimal is (Reid & Williamson, 2010, Corollary 9,
Corollary 13)

reg(s;D, `)

·

= L(s;D, `)� L( � ⌘;D, `)

= EX⇠M

[B

f

(⌘(X), ⌘̂(X))] (3)

= EX⇠M

Z 1

0
w(c) · reg

c

(⌘(X), ⌘̂(X)) dc

�
,

(4)

where B

f

is a Bregman divergence with generator f , the
weight function w = f

00, and reg

c

(⌘, ⌘̂)

·

= |⌘ � c| · J(⌘ �

c) · (⌘̂ � c) < 0K the cost-sensitive pointwise regret. Intu-
itively, Equation 4 says that a loss focusses on accurately
modelling the range of ⌘ values for which w(·) is large.
For example, logistic loss has as f the negative Shannon
entropy, and so seeks an ⌘̂ with minimal KL-divergence to
⌘; further, it has weight function w(c) = (c · (1� c))

�1.

2.3. Covariate shift adaptation

In covariate shift problems (Sugiyama & Kawanabe, 2012),
we have train and test distributions DTr and DTe with
⌘Tr = ⌘Te, but MTr 6= MTe. Our goal remains to min-
imise L(s;DTe, `). This is a canonical application for DRE
because the importance weighting identity

L(s;DTe, `) = EX⇠M

⇥
r(X) · EY⇠⌘(X) [`(Y, s(X))]

⇤
(5)

for density ratio r = mTe/mTr of the corresponding
marginal densities implies that if we estimate r, we can
simply re-weight training instances accordingly so as to
adapt to the test distribution (Shimodaira, 2000). (On finite
samples, importance weighting may actually bring little or
negative improvement, and thus covariate shift adaptation
may require more than simply estimating r (Cortes et al.,
2010; Reddi et al., 2015; Swaminathan & Joachims, 2015);
this is however beyond the scope of the present paper.)

3. Linking density ratios to class-probabilities
Suppose we wish to estimate a density ratio r = p/q, given
samples from the respective densities. One can view these
samples as arising from a distribution D over binary labels,
where p and q are the densities of the class-conditional dis-
tributions, and ⇡ is the relative frequency of samples from
the densities. (For the covariate shift problem of §2.3, such
a D would encode the discrimination between training and
testing instances with p = mTe and q = mTr.)

The above suggests that methods for learning from binary
labels could be used to estimate r. Indeed, as in Bickel
et al. (2009); Smola (2010), Bayes’ rule implies:

(8x 2 X)
⌘(x)

1� ⌘(x)

=

p(x)

q(x)

·

⇡

1� ⇡

, (6)

where P(X = x) cancels for both terms in the LHS; thus,

(8x 2 X) r(x) ·

=

p(x)

q(x)

=  dr (⌘(x)) , (7)

for the link function

 dr(u)
·

=

1� ⇡

⇡

·

u

1� u

. (8)

Intuitively, this elementary fact suggests one should be able
to uses CPE losses to perform DRE, and vice-versa. The
rest of the paper makes this intuition precise. We devote
the next few sections to the usage of CPE losses for DRE,
and then return to the usage of DRE losses for CPE in §7.
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tributions, and ⇡ is the relative frequency of samples from
the densities. (For the covariate shift problem of §2.3, such
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et al. (2009); Smola (2010), Bayes’ rule implies:

(8x 2 X)
⌘(x)

1� ⌘(x)

=

p(x)

q(x)

·

⇡

1� ⇡

, (6)

where P(X = x) cancels for both terms in the LHS; thus,

(8x 2 X) r(x) ·

=

p(x)

q(x)

=  dr (⌘(x)) , (7)

for the link function

 dr(u)
·

=

1� ⇡

⇡

·

u

1� u

. (8)

Intuitively, this elementary fact suggests one should be able
to uses CPE losses to perform DRE, and vice-versa. The
rest of the paper makes this intuition precise. We devote
the next few sections to the usage of CPE losses for DRE,
and then return to the usage of DRE losses for CPE in §7.

for weight function w = f’’ and same f as before. Intuitively, a 
loss focusses on the range of η values where w is large. 

From the previous panel, we have: 
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Remark 6. The need for f 00 to exist is why we used the
qualifier “essentially” when describing the result in §1.
Remark 7. See Appendix C for the simple, but slightly
more cumbersome generalisation to ⇡ 6=

1
/2.

Proposition 3 has implicit precedent in three special cases:
Sugiyama et al. (2012a, Section 3) showed that logistic
regression, KLIEP and LSIF perform Bregman minimisa-
tion. Proposition 3 shows that this is simply a manifesta-
tion of the fact that they all use proper composite losses,
and broadly generalises the result to other `.

Proposition 3 has at least three useful implications. First,
it theoretically justifies the reduction of DRE to CPE, as
in e.g. Bickel et al. (2009). Second, it opens the door to
performing DRE using any other of the standard arsenal of
CPE losses (e.g. exponential, square hinge). Third, we can
leverage existing analyses for CPE to help us design suit-
able losses for a DRE task. This last point is important:
while Proposition 3 implies all proper composite losses are
“equally good” for DRE if we have sufficiently many sam-
ples and a rich function class, in practice neither of these
conditions is expected to hold. It is thus of interest to deter-
mine what tradeoffs are imposed by different losses. This
is studied in the next section.

6. Designing CPE losses for DRE
We now show that different CPE losses focus on modelling
different regions of the density ratio, as specified by an im-
plicit weight function whose form we provide. We then
discuss how to design CPE losses so as to employ a fixed
such weighting, and provide some new losses for DRE.

6.1. A weight function view of losses for DRE

Recall from Equation 4 that every proper composite ` has
an associated weight function w over cost ratios, so that w
specifies the tradeoffs in modelling ⌘ implied by a given
loss. We can similarly interpret each ` as focussing on dif-
ferent ranges of the density ratio r, as specified by a density
ratio weight function wDR(⇢) defined below.
Lemma 4. Pick any strictly proper composite ` with twice
differentiable f and weight function w. For any scorer s

and distribution D = (P,Q,

1
/2),

reg(s;D, `) =

1

2

· EX⇠Q

Z 1

0
wDR(⇢) · reg

⇢

(r(X), r̂(X)) d⇢

�
,

where r̂ is as per Equation 17, the density ratio weight
function wDR : [0,1) ! R+ is

wDR(⇢)
·

=

1

(1 + ⇢)

3
· w

✓
⇢

1 + ⇢

◆
, (21)

and the pointwise regret around threshold ⇢ is

reg

⇢

(r, r̂)

·

= |r � ⇢| · J(r � ⇢) · (r̂ � ⇢) < 0K. (22)

Proof of Lemma 4. By Proposition 3 and Equation 19,

reg(s;D, `) =
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2

· EX⇠Q

Z 1

0
(f

�
)

00
(⇢) · reg

⇢

(r(X), r̂(X)) d⇢

�
.

Defining wDR = (f

�
)

00 and applying Equation 20 (recall-
ing that w = f

00), the result follows.

Thus, analogous to our intuition for estimating ⌘, min-
imising a proper composite loss intuitively focusses on the
range of r values for which the corresponding wDR(·) is
large. The relationship between wDR and w (Equation 21)
features a non-obvious dependence on (1 + ⇢)

�3.

Table 1 summarises the weight functions over cost and den-
sity ratios for the DRE losses of §4.1, and for some stan-
dard proper composite losses. The latter are seen to place
more importance on accurate modelling of smaller density
ratios. The power family has a similar trend for ↵ < 1,
but at ↵ = 1 the LSIF loss has uniform weighting over all
possible values of the density ratio. Also of interest is that
only the LSIF and square losses have wDR(0) < +1.

Which of these tradeoffs is the most suitable for DRE? A
uniform weighting can be motivated by appeal to general-
isation bounds: Cortes et al. (2008) showed that ensuring
small expected `2 distance between the true density ratio
r and one’s estimate r̂ yields guarantees on the excess er-
ror from using r̂ instead of r as weights to a kernel-based
learner. This speaks in favour of the LSIF loss, which from
Table 1 employs a uniform weighting. However, it is not
the only such loss with this property; we now see how one
can pair a range of link functions  with a given weight
wDR, to generate new proper composite losses for DRE.

6.2. New proper composite losses for DRE

Suppose we fix a weight function wDR we believe suitable
for DRE, and desire a proper composite loss that employs
this weight. By definition, specifying wDR equally spec-
ifies the weight w over cost ratios. This, in turn, speci-
fies the negative Bayes-risk f for any loss employing this
weight (up to a linear term). Recall however that the nega-
tive Bayes-risk f only specifies the underlying proper loss
�: we still have complete flexibility in choosing a link func-
tion  to generate a proper composite loss.

To pick a suitable  , one desiderata is that the resulting
composite loss should be convex for ease of optimisation.
For a fixed weight w, there is a simple canonical link func-
tion  can that ensures this, being any link that satisfies

 

0
can(u)

·

= w(u). (23)

The corresponding proper composite loss is (Buja et al.,
2005, Section 16), (Reid & Williamson, 2010, Section 6.1)

`

0
�1(v) =  

�1
can(v) and `

0
1(v) =  

�1
can(v)� 1, (24)
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Remark 6. The need for f 00 to exist is why we used the
qualifier “essentially” when describing the result in §1.
Remark 7. See Appendix C for the simple, but slightly
more cumbersome generalisation to ⇡ 6=

1
/2.

Proposition 3 has implicit precedent in three special cases:
Sugiyama et al. (2012a, Section 3) showed that logistic
regression, KLIEP and LSIF perform Bregman minimisa-
tion. Proposition 3 shows that this is simply a manifesta-
tion of the fact that they all use proper composite losses,
and broadly generalises the result to other `.

Proposition 3 has at least three useful implications. First,
it theoretically justifies the reduction of DRE to CPE, as
in e.g. Bickel et al. (2009). Second, it opens the door to
performing DRE using any other of the standard arsenal of
CPE losses (e.g. exponential, square hinge). Third, we can
leverage existing analyses for CPE to help us design suit-
able losses for a DRE task. This last point is important:
while Proposition 3 implies all proper composite losses are
“equally good” for DRE if we have sufficiently many sam-
ples and a rich function class, in practice neither of these
conditions is expected to hold. It is thus of interest to deter-
mine what tradeoffs are imposed by different losses. This
is studied in the next section.

6. Designing CPE losses for DRE
We now show that different CPE losses focus on modelling
different regions of the density ratio, as specified by an im-
plicit weight function whose form we provide. We then
discuss how to design CPE losses so as to employ a fixed
such weighting, and provide some new losses for DRE.

6.1. A weight function view of losses for DRE

Recall from Equation 4 that every proper composite ` has
an associated weight function w over cost ratios, so that w
specifies the tradeoffs in modelling ⌘ implied by a given
loss. We can similarly interpret each ` as focussing on dif-
ferent ranges of the density ratio r, as specified by a density
ratio weight function wDR(⇢) defined below.
Lemma 4. Pick any strictly proper composite ` with twice
differentiable f and weight function w. For any scorer s

and distribution D = (P,Q,

1
/2),

reg(s;D, `) =

1

2

· EX⇠Q

Z 1

0
wDR(⇢) · reg

⇢

(r(X), r̂(X)) d⇢

�
,

where r̂ is as per Equation 17, the density ratio weight
function wDR : [0,1) ! R+ is

wDR(⇢)
·

=

1

(1 + ⇢)

3
· w

✓
⇢

1 + ⇢

◆
, (21)

and the pointwise regret around threshold ⇢ is

reg

⇢

(r, r̂)

·

= |r � ⇢| · J(r � ⇢) · (r̂ � ⇢) < 0K. (22)

Proof of Lemma 4. By Proposition 3 and Equation 19,

reg(s;D, `) =

1

2

· EX⇠Q

Z 1

0
(f

�
)

00
(⇢) · reg

⇢

(r(X), r̂(X)) d⇢

�
.

Defining wDR = (f

�
)

00 and applying Equation 20 (recall-
ing that w = f

00), the result follows.

Thus, analogous to our intuition for estimating ⌘, min-
imising a proper composite loss intuitively focusses on the
range of r values for which the corresponding wDR(·) is
large. The relationship between wDR and w (Equation 21)
features a non-obvious dependence on (1 + ⇢)

�3.

Table 1 summarises the weight functions over cost and den-
sity ratios for the DRE losses of §4.1, and for some stan-
dard proper composite losses. The latter are seen to place
more importance on accurate modelling of smaller density
ratios. The power family has a similar trend for ↵ < 1,
but at ↵ = 1 the LSIF loss has uniform weighting over all
possible values of the density ratio. Also of interest is that
only the LSIF and square losses have wDR(0) < +1.

Which of these tradeoffs is the most suitable for DRE? A
uniform weighting can be motivated by appeal to general-
isation bounds: Cortes et al. (2008) showed that ensuring
small expected `2 distance between the true density ratio
r and one’s estimate r̂ yields guarantees on the excess er-
ror from using r̂ instead of r as weights to a kernel-based
learner. This speaks in favour of the LSIF loss, which from
Table 1 employs a uniform weighting. However, it is not
the only such loss with this property; we now see how one
can pair a range of link functions  with a given weight
wDR, to generate new proper composite losses for DRE.

6.2. New proper composite losses for DRE

Suppose we fix a weight function wDR we believe suitable
for DRE, and desire a proper composite loss that employs
this weight. By definition, specifying wDR equally spec-
ifies the weight w over cost ratios. This, in turn, speci-
fies the negative Bayes-risk f for any loss employing this
weight (up to a linear term). Recall however that the nega-
tive Bayes-risk f only specifies the underlying proper loss
�: we still have complete flexibility in choosing a link func-
tion  to generate a proper composite loss.

To pick a suitable  , one desiderata is that the resulting
composite loss should be convex for ease of optimisation.
For a fixed weight w, there is a simple canonical link func-
tion  can that ensures this, being any link that satisfies

 

0
can(u)

·

= w(u). (23)

The corresponding proper composite loss is (Buja et al.,
2005, Section 16), (Reid & Williamson, 2010, Section 6.1)

`

0
�1(v) =  

�1
can(v) and `

0
1(v) =  

�1
can(v)� 1, (24)To target a range of density ratio values, we can pick a loss 

with high weight in this range. e.g. LSIF has uniform weighting.  
We can “invert” above relation to w to find a suitable CPE loss. 

Applying DRE losses for CPE problems 

The link between DRE and CPE cuts both ways: we can 
equally apply DRE losses where CPE losses are employed. 
 
One such application is in bipartite ranking where accuracy at 
the top of the ranked list is essential. Here, one can apply CPE 
losses with weight w emphasising large cost ratios. 

LSIF has such a desirable weight w(c) = 1/(1 – c)3. This, 
combined with its closed form solution, suggest usefulness in 
top ranking problems, confirmed in experiments. 

Q: Can we formally justify using an approximate class-probability 
estimate to compute density ratios? 
 
A: Yes, via a novel Bregman identity and a notion of regret. 

Usage: covariate shift 
adaptation, outlier detection. 

class-conditional ratio r = p/q class-probability function η 

Usually understood as divergence estimation, but in fact: 

These popular methods implicitly perform CPE, with risk 
minimiser exactly the density ratio! 

giving a clear sense in which we!

Preliminaries 

We provide a formal link between two problems: 

Usage: supervised 
learning, bipartite ranking.!

Given a distribution D, the two problems require estimating: 

Our study revolves around a loss function view of the two 
problems. Consider two popular discriminative DRE losses: 

This paper
Formal link between CPE and DRE

existing DRE approaches ! implicitly performing CPE

CPE ! Bregman minimisation for DRE

new application of DRE losses to top-k ranking
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LSIF
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where the weights over density and cost ratios relate via: 
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Distributions for learning with binary labels
Fix an instance space X (e.g. RD)

Let D be a distribution over X⇥{±1}, with P(Y = 1) = 1

2

and

(P(x),Q(x)) = (P(X = x|Y = 1),P(X = x|Y =�1))

(M(x),h(x)) = (P(X = x),P(Y = 1|X = x))

Class conditionals Marginal and class-probability function
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