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Abstract. This paper will extents my previous work which gives the vehicle fine-grained results by using multi-task 

learning method. Besides, this paper will examine whether the convolutional neural network (CNN) can obtain a better 

performance on image-processing tasks than a normal fully connected network (FC network), and whether a better 

fitting can be obtained by stacking the convolutional layers. AlexNet is selected as the deeper layer model. The result 

of the experiment shows that the CNN could achieve higher accuracy, less memory consumption and faster converging 

speed in image-processing tasks than a normal FC network. AlexNet could achieve faster converging and training speed 

than the shallow CNN. Furthermore, some additional optimizing method such as neuron pruning, batch normalization 

is used to get better performance. 
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1   Introduction 

Vehicle recognition and fine-grained classification has become a crucial topic in modern intelligent city. The intelligent 

machine needs be able to identify and give the classify the specific vehicle. To solve this problem, there have been much 

previous work published. S. Kaewkamnerd and et al[1] tries to use the embedded wireless magnetic sensor for real-time 

vehicle classification scenario. WM. Liu and et al[2] designs an automatic vehicle classification instrument for high way 

toll collection system based on multiple sensor information fusion. SY Cheung and et al[3] provide a method that uses 

magnetic senor to monitor the temporary traffic measurement. 

The neuron network (NN) is a type of the deep learning model and has recently become more favorable in AI tasks 

than traditional machine learning method such as decision tree, SVM. The NN based algorithms have achieved 

outstanding results on many fields, such as facial recognition[4], real-time object detection[5], machine translation[6] and 

etc. For most of the image processing tasks, convolutional neural network (CNN) will usually be capable of. Many robust 

CNN based network have been developed, like YOLOv3[5], faster R-CNN[7] and deep ResNet[8].  

This paper plans to prove that CNN will achieve a better fitting to the image classification tasks than the FC net. 

Furthermore, this paper will also look at whether by stacking more convolution layers, the network could learn the 

complex features better than a less convolution layers network and reduce the overfitting. The evidence will be provided 

by comparing the models’ loss and multi-task learning accuracy. Three different models are tested in the experiment, 

which are a fully connected neural network (FC net), a CNN with two convolution layers and linear multi-task classifier 

layer and the AlexNet[9] with multi-task classifier. We will evaluate the performance of those models by comparing their 

loss and accuracy converging pattern and training speed. Gedeon and et al[10] introduces that pruning network by 

distinctiveness could reduce the overfitting in network training, therefore it will be used to adjust the neurons during 

training to reduce overfit. The experiment result shows that CNN based model with deeper convolutional layers could 

boost the converging speed, especially in learning complex non-linear features. For the pruning method, it does not give 

much contribution for the training. The dataset is consist of vehicles which are generated from VehicleX[11] which is an 

engine to synthesize the real-world vehicles. Additionally, rather than purely train the network, we tuned the number of 

layers and number of hidden neurons and applied other optimization methods to investigate the better performance.  

The contents of the paper are organized into this structure: section 2 will introduce the experiment methods of this 

paper, including the dataset structure and information preprocessing, structure of FC net, simple CNN and the AlexNet 

and the neuron pruning algorithm. In addition, section 2 will also introduce the evaluation metrics. Section 3 will show 

all the experiment results and the discussion about the results. Section 4 will conclude the paper and give future work 

2   Methodology  

2.1   VehicleX dataset, data preprocessing  

VehicleX[11] is an open source image engine which is implemented by Unity. It could simulate and generate virtual 3D 

real-world vehicles. Its dataset contains 1,362 various simulated vehicles (1,362 vehicleID). The vehicles have 12 colors 
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and 11 types. In this paper, we use the images that are generated by this engine. The generated dataset contains 45,438 

images for training, 14,936 images for validation and 15,412 images for testing. The data distribution is shown in figure 

1. Each image is an RGB jpg with dimension of 3 × 256 × 256. There will be some data augments applied for the images 

includes random rotation and random horizon flip, then the image will be converted to tensor and put into the network. 

   

   

Fig. 1 Data distribution for the dataset 

  

The labels of each image can be separated into two stages. First stage contains the computer vision related labels 

(camera height, camera distance, camera direction, light intensity, light direction, vehicle orientation). The second stage 

contains vehicle property related labels (colorID, typeID, vehicleID).  

For this experiment, only vehicle property related labels are used, and each ID will be given a classification task. The 

expected output of the model are the color and type of the input vehicle image and its corresponding vehicleID. The 

colorID and typeD are relatively simple classification tasks, since the total number of classes is not large (12 and 11 

respectively). However, vehicleID is a complex task, because of the large number of classes (total 1,362).  

2.2   FC Network 

First, we provide a fully connected network with multi-task learning functionality as the benchmark. The architecture of 

the fully connected network is shown in figure 2. Due to the extreme large memory consumption of the image processing, 

the experiment device does not have so many memories to afford for the direct input of the image. Therefore, we add a 

2D max pooling layer to down sample the input image before inputting it to the first layer. There are three classification 

tasks for the model, which are the vehicleID classification (1362 classes), colorID classification (12 classes) and typeID 

classification (11 types). 

 

 

Fig. 2 Structure of the simple FC net. BN_linear means do batch normalization after the linear layer. 
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 The max pooling will down sample the image according to the pooling kernel and the stride (figure 3). The output 

value of the max pooling layer would be the maximum value inside the pooling kernel. The output size of the max pooling 

can be calculated by Eq. 1. Due to the down sampling functionality, the spatial complex in training will be reduced. 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
input size − kernel size

stride
(1) 

 

 

Fig. 3 Example of 3X3 max pooling output 

 

 We use the ReLU for the hidden layer activation function and a dropout layer with rate of 0.5. Since this is a multi-

class classification task, the loss function will be calculated by using the categorical cross-entropy loss (Eq. 3) with log 

softmax function (Eq. 2). Where 𝑦̂ and 𝑦 denotes the target and prediction 

LogSoftmax(xi) = log (
exp(xi)

∑ exp(xj)j

) (2) 

𝑙(𝑦̂, 𝑦) = − ∑ 𝑦(𝑘) log(𝑦̂(𝑘))

𝑘

𝑘

(3) 

2.3   Simple CNN 

The second tested model is a CNN with two convolutional layers (Figure 4). The input will be convolved and pooled 

twice, then be flatten to a 1D tensor before getting into the hidden layers. The hidden layer classifier maintains the same 

setting as the FC net hidden layers, including the activation function, dropout rate and number of output classes.  

 

 

Fig. 4 Structure of the simple CNN. BN_conv2d means batch normalize after the convolution, and BN_linear means batch 

normalize after the fully connected layer. 
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CNN is a deep learning model that can take an input image and assign importance to various features or objects in the 

image and can differentiate one from another. The spatial and temporal dependencies in the image could be successfully 

captured by the CNN through the application of sliding kernel filters. Each of the filter has a specific set of neurons, then 

the specific area of input image will be convolved with those filter kernels to produce a feature map. The feature map 

convolution can be calculated through Eq. 4. 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 = 𝑖𝑛𝑝𝑢𝑡⨂𝑘𝑒𝑟𝑛𝑒𝑙 = ∑ ( ∑ 𝑖𝑛𝑝𝑢𝑡(𝑥 − 𝑎, 𝑦 − 𝑏)𝑘𝑒𝑟𝑛𝑒𝑙(𝑥, 𝑦)

𝑟𝑜𝑤𝑠

𝑥=0

)

𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑦=0

(4) 

Since the kernel is sliding when calculating the feature maps, the output will be sliding dot product between the input 

and the kernel, a and b denotes the sliding steps in column and row direction. The convolution between the kernels and 

input will produce a series of neurons in an activation map that detect features in different regions of the input data. The 

pooling method is same as the 2D max pooling that was discussed in section 2.2 Eq. 1. 

Finally, the input to fully connected layer from the convolution layer is width and height of the image that reduced 

by the pooling layers multiply the number of feature maps (out_channels). 

With the assistant of the variety of dimensionality reduction techniques in the CNN, the computational load in the FC 

layers will be significantly reduced compares to the normal NN. Besides, the kernel method would also allow the 

network to study image’s detail features locally and globally depends on the kernel.  

2.4   AlexNet 

To test how the different architecture and depth in convolution layer can affect the performance of CNN, we will used 

the AlexNet[9] as the comparison to the previous simple CNN model, however, we will do some modification for this 

network. Figure 5 shows the architecture of the AlexNet. 

 

Fig. 5 AlexNet architecture[9] 

 AlexNet is a well-designed CNN architecture which achieved a decent result in training the ImageNet dataset. The 

AlexNet consists of eight layers, which are five convolutional layers and three fully connected layers. However, we will 

substitute the fully connected layers in the original model by using the FC net that is just introduced in figure 1.  

2.5   Neuron pruning by distinctiveness 

According to the research of T.D Gedeon and et al [10], pruning the hidden neurons will decrease the overfitting and 

increase the speed of computing. Pruning neurons by distinctiveness will be applied in the following testing.  

Pruning network by distinctiveness includes four steps: 

Firstly, apply different patterns on network structure, then train the neuron network with sufficient iterations, then 

normalize the weights value to clip the values between [-0.5, 0.5] (Eq. 5).  

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑤𝑒𝑖𝑔ℎ𝑡 − min (𝑤𝑒𝑖𝑔ℎ𝑡)

max (𝑤𝑒𝑖𝑔ℎ𝑡)
− 0.5 

Secondly, extract the weight information of one of the hidden layers. All the extract weights will be stored in a matrix 

whose size of rows is the number of the output and size of column is the number of hidden neurons.  

Thirdly, pick a pair of column vectors from the weight matrix and calculate the angle between those vectors. The angle 

between vectors can be calculated by equation (6), where 𝐴𝑖 and 𝐵𝑖  are different column vectors in weight matrix: 

𝑐𝑜𝑠𝜃 =
∑ (𝐴𝑖 ∗ 𝐵𝑖)𝑛

𝑖=1

√∑ (𝐴𝑖)
2 ∗ ∑ (𝐵𝑖)2𝑛

𝑖=1
𝑛
𝑖=1

=
𝐴𝑇𝐵

||𝐴|| ∗ ||𝐵||
(6) 

Once we get the angle 𝜃 between those vectors, we could consider the pruning in two conditions. If the angle 

between the vectors is less than 15 degrees, then we remove one of the vectors, and the vector which is removed is 

added to the vector of unit which remains. If the angle between the vectors is larger than 165 degrees, we will remove 

both. The pruning will be applied during the training process. Since direct remove the weights during training will make 

the training dimension incompatible, all the vectors which should be removed will be set to zero. 
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2.6   Evaluation metric 

Since there are not only simple classification tasks assessed (colorID 12 classes and typeID 11 classes), but also 

sophisticated classification task with 1,362 classes (vehicleID). The simple accuracy evaluation would be too harsh 

toward the complex case. Therefore, we introduce the top-K accuracy measuring method for our evaluation metric, here 

we will use the top-1 and top-3 criteria. Top-1 is equivalent to a simple accuracy metric which only determines whether 

the highest prediction matches the ground truth, while top-3 accuracy indicates that any of the highest 3 predictions 

match the ground truth. The formular is shown in Eq. 7. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝛿𝑡𝑜𝑝−𝑘(𝑥𝑖 , 𝑡𝑖)

𝐾
𝑖=1

𝐾
(7) 

K indicates the number of tested samples, 𝑥𝑖 is the predicted result and 𝑡𝑖 is the target. 

3   Result and Discussion 

3.1   Implementation setting and testing devices 

All the models are trained by using RTX3070 8G GPU. Due to the memory limit, the maximum acceptable batch size is 

50, therefore we use this batch size during the training. Each model is trained through 40 epoch, and random shuffle was 

used in each training epoch. All models are trained with the same training schedulers, which are Adam with learning rate 

0.0001. In addition, during each epoch, the validation set is added after each training to evaluate the learning performance 

of current model (whether it is overfitting or not). The loss and accuracy data that will be displayed are the averaging 

values from each epoch. In another words, we will take the average value of all the loss/top-k accuracy we got to represent 

the current epoch loss/top-k accuracy. The loss will be the average loss of the three classes. Then we will compare their 

best results and converging speed and benchmark those models on the testing set and get the conclusion.  

3.2   Loss evaluation 

Followed by the settings discussed in section 3.1, we first compare the performance among the simple CNN, the FC net 

and AlexNet. Figure 6 shows the plots of training and validation loss of the FC net compares to the simple CNN and 

AlexNet. We can see that AlexNet and CNN have faster converging speed and less loss values than the FC net within the 

40 epochs of training, while AlexNet has the fastest converging speed and lowest loss values.  

   

Fig. 6: Training loss and validation loss FC net vs CNN vs AlexNet 

3.3   Accuracy evaluation 

For the accuracy plots, the validation accuracy of all the models is shown in the figure 7. We can see that the 

majority of the experiment results indicates AlexNet has the highest accuracy and converging speed, simple CNN 

achieves the medium accuracy and converging speed while FC net has the lowest accuracy. However, the top-3 typeID 

is an exception, which shows that the simple CNN has the highest accuracy while AlexNet is medium.  
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Fig. 7 Validation accuracy FC net vs CNN 

3.4   Test results 

Table 1 shows the results of test accuracy of the FC net, simple CNN and AlexNet. The comparison shows that AlexNet 

achieves the highest accuracy in all the testing classes and top-k criteria. Furthermore, for the vehicleID accuracy, which 

is a sophisticated classification task, its difference across models is much larger than other classes, especially for the FC 

net (19.02% less than CNN and 28.13% less than AlexNet). Even though the TypeID accuracy difference between the 

FC net and CNN is large under top-1 criteria (19.08% less than CNN), the difference is significantly reduced. The 

accuracy difference between different models is reduced by using the top-3 evaluation criteria, however FC net still has 

much lower accuracy of FC net than other two models. In addition, the difference of the vehicleID classification accuracy 

between the simple CNN and AlexNet is also larger than the difference between other ID accuracy. 

Table. 1 Test accuracy FC net vs CNN vs AlexNet 

Models FC net CNN AlexNet 

TypeID top-1 Acc % 62.14 81.22 88.59 

ColorID top-1 Acc % 81.28 90.48 93.77 

VehicleID top-1 Acc % 42.94 62.98 78.12 

TypeID top-3 Acc % 89.38 96.89 98.44 

ColorID top-3 Acc % 96.96 98.99 99.39 

VehicleID top-3 Acc % 61.79 80.81 89.92 

 

3.5   Models overfitting evaluation 

To inspect the overfitting during training for each model, their plots of training loss against validation loss will be 

illustrated. Figure 8 shows the loss plots for each model, and table 2 shows the mean absolute difference between the total 

train loss and total validation loss. 

    

Fig. 8 Training loss against validation loss for each pattern 

Table. 2 mean absolute value of the difference between the sum of training loss and validation loss for each model 

FC net CNN AlexNet 

0.5558 0.5503 0.4418 
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From the table 2, FC net and CNN has close value of the difference between training and validation loss, while AlexNet 

has the lowest difference. The mean loss between FC net and CNN is around 0.005, however the difference is around 

0.11 between CNN or FC net and AlexNet. And figure 7 shows AlexNet has the highest similarity between the pattern of 

training loss and validation loss.  

3.6   Neuron pruning 

The figure 9 shows the validation loss results of each model.  

   

Fig. 9 Validation loss pruned vs not pruned  

Although, the pruning could make the validation results different, it does not contribute much on improving the 

performance of the training, like reducing the overfitting. Similarly, the accuracy of all the tags with pruning do not have 

much variation compare to the results without pruning. 

3.7   Discussion 

According to the experiment results from the previous sections, we proved that CNN could achieve outstanding 

performance than the normal fully connected in image classification task. The loss and accuracy converging speed will 

be faster if CNN based method is used during training. In another aspect, when doing a complex classification task like 

the vehicleID classification, CNN could learn the complex features in an image much better the fully connected 

network. These results may be since CNN has a variety of dimension reduction procedures inside significantly reduces 

the complexity of the image input, therefore reduce the workload and overfitting in the FC layers. Besides, features of 

the image will be learned in a more systematical way through the convolutional kernels. 

  Furthermore, the advanced fitting performance could be achieved by stacking more convolutional layers in a CNN. 

The comparison between the simple CNN and AlexNet has proved this assumption. From the section 3.4 we could find 

that the complex feature classification will be learned better in a deeper convolution layer. From the section 3.5 we 

could find the deeper convolution layer would also make the training become more robust (reduce the overfitting and 

stabilize the loss pattern).  

  For the pruning results, there is no significant difference brought by this method in terms of less overfitting or faster 

converging speed. This maybe because the pruning angles used does not fit this model or the pruning layers are too less 

to provide large contribution. 

4   Conclusion and Future work 

This paper investigates how the CNN can achieve a better fitting in image classification tasks than a fully connected 

network and the deeper convolution layers could obtain advanced performance than a shallow convolution neural 

network. The evidence is collected by testing the different multi-class classification in VehicleX dataset. It can be 

concluded that CNN can achieve a better fitting in image classification tasks than a fully connected network in terms of 

converging speed, complex features fitting, and deeper CNN can achieve better performance than the shallow CNN in 

terms of same phases. For the pruning method, it does not bring much improvement for the training process. 

  For the future work, we will examine whether by keep adding the convolutional layers for a deep CNN will result 

better performance. We will present the experiment by selecting more CNN based models such as VGG net and deep 

ResNet. We will evaluate their performance by looking at the testing accuracy, time and special complexity and the 

overfitting pattern. 
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