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Abstract.  Extended Granger Causality (eGC) is a method for inferring causal relationships between pairs of nodes, which 

considers both lag and instantaneous effects. In this paper, I investigated to what extent the classification of eGC datasets 

using BiDirectional Neural Networks (BDNN) aids in the classification of the original thermal dataset in transfer learning. 

I also applied six common feature extraction methods to the original dataset to compress the original large features before 

performing classification and found that the one with linear discriminant analysis (LDA) works best on exploiting the 

transferred knowledge, gaining an average test accuracy of about 88.89%. 
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1  Introduction 

Bidirectional neural networks (BDNN) is a novel solution to the classification problem that can be trained without the 

constraints of input information, using only a predefined future framework (A. F. et al., 1995; Schuster et al., 1997; Collobert 

et al., 2004; Rakitianskaia et al., 2016), which is achieved by training in both positive and negative temporal directions.  

However, if we use BDNN to classify a dataset with many features, since not every feature has a positive effect on the 

classification, we may be influenced by individual features and may wastefully train similar features, thus obtaining a poorly 

fitted model and subsequently a bad classification result. Therefore, we sometimes need to apply other deep learning methods 

to assist in solving the classification problem. In this paper, I applied transfer learning by transferring the parameters of the 

BDNN trained on the extended Granger Causality (eGC) dataset, expecting to get a better classification result for the original 

large dataset. My motivations are twofold:  

First, it provides a new direction for the classification problem for large datasets. Since the original dataset contains so many 

features, some of which are not even useful, it is very complicated to classify it, usually taking a long computation time and 

requiring complex neural networks to fit. In contrast, the post-eGC dataset is highly condensed, reducing the 480 features of 

the original dataset to 20 features. By transferring the effective information and applying it, the amount of features required 

for the original large dataset can be greatly reduced, and the training can be accelerated to obtain a well-fitting model.  

Second, it allows us to better understand the deeper meaning of statistical concepts on the original data. What exactly does a 

highly condensed statistical concept such as eGC entail about our original dataset? To what extent can this information help 

us understand the original dataset? This question can be answered by transfer learning of our classification problem. 

I also apply six different feature extraction methods, including Principal Component Analysis (PCA), Independent Component 

Analysis (ICA), linear discriminant analysis (LDA), local linear embedding (LLE), t-distributed random neighborhood 

embedding (t-SNE) and Auto-Encoder (AE), before performing classification. An investigation was conducted on whether 

the feature extraction methods help with learning or hinder the learning. After comparison, the classification using transferred 

knowledge with LDA extraction shows up to have the best and the most stable results, with an average test accuracy of about 

88.89%. 

2  Dataset and Method 

The main goal of this paper is to find an efficient way to transfer the latent information from the classification of the eGC 

dataset to the label prediction of the large thermal dataset. I describe these two datasets in section 2.1 and the methods that I 

used in section 2.2. 

2.1  Description of the Datasets 

The original dataset (Derakhshan et al., 2019) was collected in a hypothetical stressful crime experiment scenario in which 

participants were divided into two groups: a deception group, where those in the deception group would tell a lie, and an 



honesty group, where those in the truthful group would tell a truth. A thermal imaging camera was simultaneously used to 

record the changes in facial temperature of each participant. By collecting temperature information from five facial regions, 

including periorbital, forehead, cheek, perinasal, and chin, the collected facial thermography footage was tracked. That’s 

where the original dataset is from. It contains 480 features for 31 objects, because there’re 31 participants and the camera’s 

detector is with a maximum focal plane array (FPA) resolution of 480 dimensions.  

For the eGC dataset, based on the raw dataset, the valid connections between these time series were calculated by an extended 

version of the GC method and provided as input to four linear and non-linear classifier models. This eGC is calculated using 

the following formula (1): 

𝑒𝐺𝐶𝑌→𝑋 = 𝑙𝑛
𝑣𝑎𝑟(𝑊𝑗(𝑡))

𝑣𝑎𝑟(𝑊𝑗
′(𝑡))

. 
(1) 

The effective connectivity between each paired node (ROI) were extracted by eGC, which created 20 features for 31 subjects 

with thermal videos and five ROIs for each face.  

2.2  Method and Implementation 

Generally speaking, I have applied BDNN, transfer learning and feature extraction in this research. In this section, the 

preprocessing of each of them is shown in 2.2.1. Using the preprocessed eGC dataset, the BDNN is used for the classification 

work, the details of which are described in 2.2.2. Then, feature extraction is performed to obtain the most important features 

from the preprocessed raw dataset, as described in 2.2.3. Finally, the transferred knowledge is used for classification, as shown 

in 2.2.4. The tuning details are provided in 2.2.5. Since it is a complex process, I have drawn a schematic diagram in Figure 

1 for demonstration. 

 

Figure 1.  Structure of My Model 

2.2.1  Preprocessing of the Datasets 

The two datasets are a bit different. For the original dataset, the first column is from P1 to P31, specifying from whom the 

data is collected, while the eGC one does not have the column. Thus, I explicitly abandon this column for the original dataset. 

And then extracted the labels, calculated the average of each feature and save them back to the dataset as two single columns. 

I have plotted some statistical values for each feature in the two datasets, including the mean, variance, minimum and 

maximum values. Specifically, I printed the maximum difference between means and variances for the two. For the eGC 

dataset, all values are in the range between 0 and 1, meaning that they have been normalized. While for the original dataset, 

the maximum difference between means is very large.  

When using back propagation networks, it is necessary to normalize the data used for training according to the activation 

functions of the neurons for two main reasons: firstly, to make the input distribution of the different features vary little in 

order to prevent the classification of the overall features from being adversely affected by those features with relatively large 



values; secondly, to adapt the variation interval of the output variables to the maximum output range of the corresponding 

activation function. According to (J. Sola & J. Sevilla, 1997), standardization can improve the performance of the model to 

between 5 and 10 folds, and the computational time required during training can be reduced by an order of magnitude.  

   

                 Figure 2.  Dataset Inspection                       Figure 3.  Normalization Result for Original Dataset 

Therefore, I did normalization using the normalize function from sklearn.preprocessing library for the original dataset. The 

result after normalization is shown in Figure 3. As can be seen from the figure, the data is much more balanced than before. 

And then, I split the data into train and test data by randomly splitting at a ratio of 70/30. In addition, I recorded the mean 

values of the features as bias values within the hidden layer of the training set for further processing to improve performance.  

2.2.2  BDNN 

The training model utilized here is BDNN (A. F. et al., 1995). A BiDirectional Neural Networks (BDNN) connects two hidden 

layers in opposite directions to the same output. There is one input at each moment, the hidden layer has two nodes, one for 

forward pass and the other for backward propagation, and the output layer is determined by the values of these two nodes, as 

shown in Figure 4. 

 

Figure 4.  General Structure of BDNN 

This model should be applicable because this structure provides the output layer with complete past and future information 

for each point in the input sequence (Schuster et al., 1997; Rakitianskaia et al., 2016). As in our dataset, each value corresponds 

to a relation between two subjects, then all value should have some relationship in between, which can be regarded as the past 

and future input information. 

My implementation of BDNN can be summarized into the following pseudocodes: 

Algorithm: BDNN 

1) Forward Pass 

for i = 1 to n do 

Forward pass for the forward hidden layer. 

Store the activations. 



End for 

for i = n to 1 do 

Forward pass for the backward hidden layer. 

Store the activations. 

End for 

for i = 1 to n do 

Forward pass for the output layer, using the stored activations from both hidden 

layers. 

End for 

2) Backward Pass 

for i = 1 to n do 

Backward pass for the output layer. 

Store the activations. 

End for 

for i = n to 1 do 

Backward pass for the forward hidden layer, using the stored activations from the 

output layer 

End for 

for i = 1 to n do 

Backward pass for the backward hidden layer, using the stored activations from the 

output layer 

End for 

3) Update Weights 

Note that in my implementation, I use different loss functions for forward and backward pass. For forward pass, I use cross 

entropy loss function but for the backward pass, I use a loss function combining a Sigmoid layer and the BCE Loss in one 

single class, calculated by equation (2). The reason for doing this is to take the benefit of the log-sum-exp trick for numerical 

stability (Murphy, & K. P., 2006). 

  

(2) 

2.2.3  Feature Extraction 

In this paper, six feature extraction methods (Ippolito, 2019) are used, which are Principal Component Analysis (PCA), 

Independent Component Analysis (ICA), linear discriminant analysis (LDA), local linear embedding (LLE), t-distributed 

random neighborhood embedding (t-SNE) and Auto-Encoder (AE). 

Principal Component Analysis.  PCA is one of the most common and traditional linear dimensionality reduction techniques. 

In PCA, the original data is the input, and the goal is to try to find a combination of input features that best summarizes the 

distribution of the original data and thus reduces its original dimensionality. PCA can maximize the variance and minimize 

the reconstruction error by looking at the distance of the pairs. In PCA, our raw data is projected onto a set of orthogonal axes, 

with each axis ranked by importance. The reason this approach may work is that out of 480 features in the original dataset, 

we were able to select the top 20 most important features as representatives for subsequent operations. The reason I chose the 

number of 20 here is that there are also 20 features in the eGC dataset, and I wanted to make the dataset before and after the 

transfer relatively similar. 

Independent Component Analysis.  ICA [10] is a linear dimensionality reduction method that takes a mixture of independent 

components as input data, with the aim of correctly identifying each component and removing all unnecessary noise. Two 

input features are considered independent if their linear and nonlinear dependencies are both equal to zero. The reason why 

this approach may be applicable is that it removes those noises from the 480 features of the original dataset that affect the 

correct classification and may be useful for our subsequent processing. In the same way as the PCA selection, in our 

experiments, after ICA we will also select only 20 features. 

Linear Discriminant Analysis.  Unlike the first two methods, LDA is a supervised learning dimensionality reduction 

technique and machine learning classifier that aims to maximize the distance between the means of each class and minimize 

the spread of the classes themselves. Therefore, LDA uses both within-class and between-classes as measures. This is a good 

choice because maximizing the distance between the means of each class can lead to better classification results when 



projecting the data into a low-dimensional space, due to the reduced overlap between different classes. LDA can have good 

results when the input data follows the Gaussian distribution, which is applicable since our original dataset has been 

normalized. Here, the feature dimension after LDA is reduced to 1. 

Local Linear Embedding.  Methods such as PCA and LDA can perform very well when there is a linear relationship between 

different features, but the original dataset is not necessarily linear between features, so we also need to consider how to handle 

the nonlinear case. LLE is a dimensionality reduction technique based on Manifold Learning, aiming to make this object 

representable in its original D-dimensional space, rather than in an unnecessarily larger space. It seeks a low-dimensional 

projection of the data, preserving distances within local neighborhoods. It can be considered as a sequence of local PCA to 

find the best nonlinear embedding by global comparison. Here the number of features after LLE is reduced to 20. 

t-distributed random neighborhood embedding.  t-SNE is a nonlinear dimensionality reduction technique that works by 

minimizing the difference between a distribution consisting of pairwise probabilistic similarities of input features in the 

original high-dimensional space and the equivalent distribution in the reduced low-dimensional space, using gradient descent 

to minimize the KL divergence. The dimension after t-SNE is 3. 

Auto-Encoder.  AE is composed of an encoder and decoder. This dimensionality reduction method involves learning a 

representation (encoding) for a set of data, by training the network to ignore signal "noise". While performing the 

dimensionality reduction and learning the reconstruction side, the autoencoder tries to produce a representation from the 

reduced encoding that is as close as possible to the original input. It can ignore a portion of the noise of the features, which is 

why I utilize this method for dimensionality reduction here. The result of the dimensionality reduction is in three dimensions.  

In section 3.2, I will analyze the result for each and explore which method aids the exploitation of transferred knowledge the 

most. 

2.2.4  Transfer Learning 

In deep learning, transfer learning (Weiss et al., 2016) is a technique in which a neural network model is first trained on a 

problem, and then the hidden layers from the trained model are used as initialization for a new model trained on a new 

problem.  The information from these hidden layers can be effectively used in the new problem, and a well-fitting model can 

be obtained early in the training. We call the previous problem the source domain and the new problem later the target domain. 

Then, in transfer learning, we want to explore an effective transfer method so that the knowledge transferred from the source 

domain can help the training in the target domain.  

In my research, the source domain is the problem of classifying the eGC dataset, the target domain is the problem of classifying 

the original dataset (which may go through the feature extraction step), and the transferred knowledge is the hidden layer of 

the BDNN trained on the eGC dataset. 

2.2.5  Hyper-Parameter Tuning 

The tuning is on the original dataset after extracting features by LDA. There’re five hyperparameters for adjustment: number 

of classes, learning rate, hidden layer nodes’ number, number of epochs and batch size. For this experiment, the number of 

classes is fixed, and is equals to 2. For the rest of the hypermeters, I have designed some simple experiments for tuning. 

For tuning the learning rate, one strategy is to start with a larger value and reduce it to near zero at the end of training. 

Therefore, based on the dataset not being very large, I designed an experiment that started at 0.5 and reduced it by 0.01 each 

time until it touched zero, comparing the results of three parallel experiments for the average test accuracy. The results show 

that the best learning rates for the three experiments were 0.39, 0.43 and 0.42 (Table 1). Therefore, I set the learning rate to 

be the mean, i.e., 0.41. 

Table 1.  Tuning learning rate experiment result (hidden size = 10, number of epochs = 100, batch size = 16) 

 Highest test accuracy Best learning rate 

Exp. 1 88.89% 0.39 
Exp. 2 88.89% 0.43 
Exp. 3 88.89% 0.42 
Average 88.89% 0.41 

 

To find the most suitable number of nodes for the hidden layer, as it should lie between the input size and the output size, I 

also tested using three parallel experiments, starting with the size of the training set and decreasing it by one at a time until it 

reached 0. The experiment was repeated three times and the size with the maximum test accuracy was recorded. A summary 

of the test result is shown in Table 2. Therefore, I choose the hidden size to be 5. 



Table 2. Tuning hidden layer node number experiment result (learning rate = 0.41, number of epochs = 100, batch size = 16) 

 Highest test accuracy Best hidden size 

Exp. 1 88.89% 2 
Exp. 2 88.89% 3 
Exp. 3 88.89% 11 
Average 88.89% 5 

 

Similar experiments were conducted on batch sizes, with a summary of the results shown in Table 3. there are typically three 

choices of batch size: batch mode, where the batch size is equal to the total dataset so that iterations and epoch values are 

equal; mini-batch mode, where the batch size is greater than 1 but less than the total dataset size; and stochastic mode, where 

the batch size is equal to 1, and the gradient and neural network parameters are updated after each sampling [9]. I therefore  

started with a batch size of 1 until it was equal to the size of the dataset, in order to find the parameter that would give the 

maximum test accuracy. From result shown in Table 3, I choose the batch size to be 14. 

Table 3. Tuning batch number experiment result (learning rate = 0.41, hidden layer size = 5, number of epochs = 100)  

 Highest test accuracy Best batch size 

Exp. 1 88.89% 9 
Exp. 2 88.89% 7 
Exp. 3 88.89% 10 
Average 88.89% 9 

 

For the epoch size adjustment, I first initialized it to the dimensionality of the training set and then increased it by 10 at a time 

until it converged to a value where the difference between the current accuracy and the previous accuracy was less than 1e-

12, until it reaches 500 epochs. I summarize the results in Table 4 and we could find that the number of epochs is set to 100 

is appropriate, so I choose the number of epochs to be 100. 

Table 4. Tuning epoch number experiment result (learning rate = 0.41, hidden layer size = 5, batch size = 9)  

 Best epoch number 

Exp. 1 130 
Exp. 2 90 
Exp. 3 80 
Average 100 

 

Same methods are performed on eGC dataset and the summary of the tuning results is shown in Table 5. As the hidden layer 

size should be the same, so I let the eGC dataset’s hidden_size also be 5. 

Table 5. Hyperparameter result 

Original 

with LDA 

Num_classes Learning_rate Hidden_size Num_epochs Batch_size 

2 0.41 5 100 9 

eGC dataset 
Num_classes Learning_rate Hidden_size Num_epochs Batch_size 

2 0.085 21 5 100 14 

3  Results and Discussion 

Based on the above, I designed seven groups of experiments, six of which are experimental groups applying different feature 

processing methods to the original dataset, and the control group is a classification without applying feature processing 

methods, as detailed in section 3.1. After having found the feature extraction method that best fits the model, I performed a 

statistical analysis of my results, and the statistical indicators are described in section 3.2. Finally, all my experimental results 

are summarized, and the issues included in my study are described in section 3.3. 

3.1  Effect of Different Feature Extraction Methods 

Based on the purpose of finding the best method to classify the original large dataset by transferring the neural network 

parameters of the eGC dataset trained with BDNN, I investigate the impact of the six different feature methods described in 

the previous section on the transfer by designing 100 sets of parallel experiments and counting two metrics, the average test 

accuracy and the cumulative test accuracy for the first 50 sets of each group. The reason I use cumulative test accuracy here 

is that training can be unstable, and by being cumulative can give a good indication of the general trend of the neural network 



results. Note that these experiments were performed with hyperparameters under the eGC dataset rather than after retuning, 

so the test accuracies are not very high. Nevertheless, it is sufficient to show the improvement when using the transfer network. 

For the control group, the results are shown in Figure 5. It is clear that transfer learning helps to obtain a better model with 

higher test accuracy than training from scratch. For the other experimental groups, the results are shown in Figure 6 by 

showing the average test accuracy, and in Figure 7 by showing the cumulative test accuracy for 50 sets of parallel experiments. 

 

Figure 5.  Training from Scratch vs Using Transferred Latent Space 

As can be seen from the Figure 6, PCA, LDA and TSNE could gain positive transfer effects, while the rest gained negative 

transfer results. From the three methods with positive results, LDA gained the most significant and stable improvement, from 

Figure 7, because it is the only method with obvious orange and blue lines above the benchmarks’. Therefore, we can know 

that supervised feature extraction could get better results compared to the unsupervised ones’. 

 

 

  

Figure 6.  Average Test Accuracy for the Six Feature Extraction Methods 

 



 
 

 

 

Figure 7.  Cumulative Test Accuracy for the Six Feature Extraction Methods 

3.2  Indicators for statistical comparison 

There're in total 6 indicators using for comparisons: test loss, test accuracy, precision, recall, specificity, and F-score. Loss 

value can be seen as the difference between the true values and the predicted values by the model, which could imply how 

poorly or well a model behaves after each iteration of optimization. An accuracy metric is used to measure the percentage that 

the model makes a correct prediction, and it tells about the performance of the algorithm. In classification, both precision and 

recall are about relevance. Precision is the fraction of relevant instances among the retrieved instances while recall (also 

known as sensitivity) evaluates the relevant instances that were retrieved. Specificity is a measure of how well a test can 

identify true negatives. And F-score, the harmonic mean of precision and recall, is another measure of a test’s accuracy, 

calculated by equation (3): 

 
(3) 

3.3  Overall Performance, Comparisons and Analysis 

After adjusting the hyperparameters, I use LDA for feature extraction and then use the transferred knowledge for classification 

to get the final result. The other three benchmarks are: with feature extraction but not using transferred knowledge for 

classification, without feature extraction and using transferred knowledge, and without feature extraction and not using 

transferred knowledge. 

By comparison in Table 6, we can see that using LDA and transfer gets the best result in both test accuracy and test loss, 

much better than the statistics provided in [5], followed by using LDA and train from scratch, which gets the same test 

accuracy but with a larger loss. This shows that the feature extraction did aid the transfer learning for classification. I think 

the reason is that, after normalization, the original dataset basically follows the Gaussian distribution, which gives LDA good 

result for choosing valuable features from the large amount of data. 

For the two without LDA, the transfer one gets a worse result. This is the first limitation of my research, and I think the reason 

may be that, without feature extraction and directly transfer would make the network overfitting with the training of the eGC 



dataset and therefore could not fit with the original dataset well. Another issue with my research is that my method with LDA 

for feature extraction will take longer for training, compared with the benchmark. Although less features existed in the dataset, 

but more time will be needed for fitting. Last but not least, my result is still unstable enough. This may be because the transfer 

model is not fitted well enough. 

Table 6. Results comparisons (the first chart is to compare with the original paper in [5]; the second one is to compare with my benchbacks) 

 My result 

Baseline 1 in [5]: 

Without Feature 

Extraction 

Baseline 2 in 

[5]: KNN 

Baseline 3 in 

[5]: LDA 

Baseline 4 in 

[5]: SVM 

Linear 

Accuracy (%) 88.89 67.10 82.05 84.6 87.1 

Sensitivity 0.9 Not given 0.9 0.9 0.9 

Specificity 0.5 Not given 0.736 0.789 0.842 

Precision 0.9 Not given 0.782 0.818 0.857 

F-Score 0.8889 Not given 0.837 0.857 0.878 

 

 LDA + Transfer 
LDA + Train from 

scratch 

Without LDA + 

Transfer 

Without LDA + 

Train from scratch 

Accuracy (%) 88.89 88.89 55.56 55.56 

Loss 0.6207 0.6349 0.8930 0.6933 

Sensitivity 0.9 0.9 0.5556 0.5556 

Specificity 0.5 0.5 0.5 0.5 

Precision 0.9 0.9 0.5 0.5 

F-Score 0.8889 0.8889 0.3572 0.3572 

Time spent (seconds) 1.7973 1.6086 

4  Conclusion and Future Work 

From my experiments and implementation, I found that extracting features by using PCA, LDA and TSNE can help with 

positive transfer, showing that the three methods aid in using the latent information from the BDNN model from the eGC 

dataset. The best performance was achieved using LDA, with an average test accuracy of about 88.89%. However, if we do 

not use feature extraction, transfer learning may cause the model to overfit with the eGC dataset, such that the test result 

would be worse than training from scratch. 

However, much work ahead remains to be done. One important issue is the instability of my model results, which may be due 

to the fact that my model does not fit well to the original thermal dataset. This can be further improved by applying different 

loss functions and using different vectors as hidden biases, etc. The second issue is that it will take more time than before. 

This can be further improved by simplifying the model of BDNN. Last but not least, it has a high risk of overfitting after the 

transfer. This can be addressed by applying dropout (Srivastava et al., 2014), "early stopping", "network reduction", "data 

expansion" and "regularization" (Ying, 2019). 
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