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Abstract. Studies suggest that humans have the ability to unconsciously detect whether another person is telling the 
truth or not. This can be detected in physiological responses such as pupillary dilation and skin temperature. Zhu et al. 
[1] explored this connection by measuring the pupillary responses and analysing the data using a neural network. They 
were able to achieve 58.3% accuracy in distinguishing whether someone was presenting information they believed was 
true or misleading. In this paper, a similar study was conducted using bidirectional neural networks (BDNNs), 
augmented by genetic algorithm (GA) feature selection and transfer learning from auto-associative networks (AANs). 
While the BDNN trained on pupillary dilation data was able to achieve results above chance level, it was not able to 
match or exceed an accuracy of 58.3%, suggesting that the bidirectional functionality may not improve model 
performance. However, results could be improved by using a combination of physiological features including skin 
temperature, galvanic skin response and blood volume pulse. Using this dataset, a base BDNN was able to achieve an 
accuracy of 61.1%. While not improving on the base BDNN performance, BDNNs using GA feature selection and 
BDNNs using AAN transfer learning were able to produce accuracies greater than chance level, achieving accuracies 
of 56.5% and 57.7%, respectively. 

Keywords: Neural networks, Bidirectional neural network, Subject belief, Doubt, Pupillary dilation, Blood volume 
pulse, Galvanic skin response, Skin temperature, Feature selection, Genetic Algorithms, Auto-associative networks, 
Transfer learning 

1   Introduction 

While humans have the tendency to assume that people are generally honest [2], lies and mistruths are prevalent within 
society today. Technology has provided a platform for uninformed, unsubstantiated or purposefully misleading 
perspectives to be publicised and communicated to large audiences. Some lies have limited negative impact, but there are 
some that can have significant repercussions on a person’s personal, professional, and public life [3]. The ability to 
distinguish whether someone is being deceitful is important in navigating this complex environment. However, studies 
have shown that on average, a person can only accurately identify 54% of statements as true or false [4]. People have an 
even greater difficulty at identifying deception, with 47% of deceitful statements being correctly identified. There is a 
clear demand for technology that can assist people in distinguishing honesty from falsehood. 

There is evidence that suggests that humans’ intuitive responses and biometric information can be used to improve the 
accuracy when distinguishing deceit from truthfulness. Experiments performed by Albrechtsen, Meissner and Susa [5] 
suggest that people who formed intuitive assessments have a significantly higher accuracy at detecting deceit compared 
to people using cognitive processing. Van ‘t Veer et al. [6] found that when observers view a person who is lying, they 
could detect a decrease in skin temperature, regardless of whether the observer was forewarned about the possible deceit 
or not. Both these studies suggests that a person can unconsciously detect whether they are viewing truth or deception. 

Zhu et al. [1] also explored the relationship between observing deceit and the observer’s biometric responses by 
measuring the observers’ pupillary responses. To produce their dataset, they recorded four videos, each containing an 
individual presenting on a certain topic. In two of the videos, the presenters were told that the material they were 
presenting was “a bit bogus”, manipulating the presenter into thinking they were presenting misinformation. Each 
participant watched the two of the videos while their pupillary size was measured. The study identified that there was a 
statistically significant difference in the pupil dilation response of the observer when observing a presenter who doubted 
their information as opposed to a presenter who believed the information they were presenting. When the pupillary 
responses were processed through a neural network to detect the presenter’s belief, they achieved an accuracy of 58.3% 
which was much higher than the observer’s conscious judgement of 50% accuracy. 

This study aims to assess whether it is possible to achieve similar results to Zhu et al.’s accuracy of 58.3% for 
distinguishing presenter’s subject belief by processing an observer’s biometric data using a bidirectional neural network 
(BDNN). Like most neural networks, BDNNs are able take an input pattern to produce output data. However, they are 
trained to also be able to take the output data to predict the input data, mimic the human ability to draw associations 
between two corresponding concepts from either direction [7]. The models used in this study are based on Nejad and 
Gedeon’s [7] paper ‘BiDirectional Neural Networks and Class Prototypes’.  

To test whether BDNN results could be improved, GA feature selection and transfer learning from several types of 
AANs were implemented to the base BDNN models. GA feature selection uses a genetic algorithm to choose only input 



features that contribution to the accuracy of the model to be used. This would improve the training convergence and may 
improve the performance of the model due to the removal of non-informative features. AANs were trained on the dataset 
to implement transfer learning as the first half of the AAN layers compressed the input features, removing input data that 
provided little contribution to the output of the model. This would also improve training convergence, as well as focus 
the BDNN model on higher level features from the data, which may help generalisation. Standard feed forward AANs 
were used, as well as AANs with shared weights and bidirectional AANs, as outlined by Gedeon, Catalan and Jin [8]. 
The symmetry of the weights resulting from these two AAN models were hypothesized to assist with the bidirectional 
training of the BDNN.  

The dataset used to train the BDNN was taken from Zhu et al.’s [9] study on Deceit Detection. This dataset was 
produced using a similar method as the Zhu et al. [1] study with the exception that it also includes data on the observers’ 
blood volume pulse (BVP), galvanic skin response (GSR) and skin temperature. These datasets were also incorporated 
into the BDNN’s training to assess whether these biometrics could improve the model’s ability to distinguish the 
presenter’s subject belief. 

2   Method 

2.1   BDNN architecture 

Four BDNN architectures were used in this study. The BDNNs were based on multilayer perceptron networks, two models 
with one hidden layer and two models with two hidden layers. Each layer of the models except for the output layer used 
an activation function, either the ReLU function or the sigmoid function. 

To achieve the bidirectional functionality of the BDNN, two separate workflows were specified for the forward 
function of the model (Table 1.). This ensures that when the model was set to reverse, the data passed through each layer 
in the reverse order. For this to work, each time the direction that data was passed through the model was changed, the 
weights for each layer had to be transposed. Conceptually, this ensured that the weights used were the same for both 
directions between the same two layers. Additionally, the same bias terms were used between different layers of the 
model, depending on the direction setting of the model. For example, in the TwoLayerBDNN (Table 1.), the bias term !! 
is used between the hidden layer and output layer during the forward direction and between the hidden layer and the input 
layer during the reverse direction. 

Table 1. Forward functions of BDNN models. In the following equations, ! is the input data, " is the target data,	!∗ is the input 
prediction, "∗ is the target prediction, $" are the weights, %" are the bias terms and & represents the sigmoid function. 

 TwoLayerBDNN TwoLayerBDNNSig ThreeLayerBDNN ThreeLayerBDNNRelu 
Forward 
direction 

ℎ = )*+,($#! + %$) 
"∗ = ($%ℎ + %&) 

ℎ = &($#! + %$) 
"∗ = ($%ℎ + %&) 

ℎ# = )*+,($#! + %$!) 
ℎ% = &($%ℎ# + %$") 
"∗ = ($'ℎ% + %&) 

ℎ# = )*+,($#! + %$!) 
ℎ% = )*+,($%ℎ# + %$") 

"∗ = ($'ℎ% + %&) 
Reverse 
direction 

ℎ = )*+,($%(" + %$) 
!∗ = ($#(ℎ + %)) 

ℎ = &($%(" + %$) 
!∗ = ($#(ℎ + %)) 

ℎ% = &($'(" + %$") 
ℎ# = )*+,($%(ℎ% + %$!) 

!∗ = ($#(ℎ# + %)) 

ℎ% = )*+,($'(" + %$") 
ℎ# = )*+,($%(ℎ% + %$!) 

!∗ = ($#(ℎ# + %)) 
 

2.2   Dataset description and normalisation 

The dataset was generated from 23 participants, with each participant responding to 16 different video clips. This resulted 
in a total of 368 individual patterns in the dataset. The input data for each pattern included 34 BVP features, 23 GSR 
features, 23 skin temperature features and 39 pupillary dilation (PD) features. The target data consisted of a single binary 
feature, where 1 indicated that the presenter’s belief was not manipulated 0 indicated that presenter’s belief was 
manipulated. 

Since the mean values of certain features corresponding to the participants’ BVP were significantly higher than the 
mean values of other features (Fig. 1.), it was important to normalise the data to ensure those features did not have more 
influence during training compared to other features. The input features were normalised across all data patterns for each 
participant, as this reduced the effect of individual bias [1] and improved the accuracies being achieved.  

The split between the manipulated belief class to the non-manipulated belief class was 47.6% to 52.4%, respectively. 
As this is a relatively even split, it was decided that accuracy of the model prediction would be a reasonable method to 
assess model performance. 

 



 
Fig. 1. Magnitude of means of data features displayed on a logarithmic scale 

2.3   Training settings 

BDNNs can be trained to predict the input data from target data as either associative memories or as cluster centre finders. 
Initial testing found that cluster centre training could achieve higher accuracies then associative memory. As a result, 
cluster centre training was used throughout this study. All training was conducted with the Adam optimiser and the 
backpropagation technique for both the forward and reverse directions. Cross entropy loss was used for the forward 
direction and mean squared loss was used for the backward direction.  

To generate the final accuracies of the trained models, cross-validation was used. As it is important that all data patterns 
from the one participant remain in the same dataset either used for training or testing, each cross-validation trial used two 
participants’ data for testing, with the remaining twenty-one participants used for training. This was similar to the leave-
one-participant-out method used by Zhu et al. [1] but slightly less computationally expensive. 

To determine when to switch between forward and reverse training, each model was initially trained in the forward 
direction for a specified number of epochs (the maximum number of epochs per direction). At the end of the specified 
number of epochs, the average loss per target node over the latest epoch, designated as the error tolerance, was recorded 
and the direction of training was switched. In subsequent epochs, if the number of epochs in the same direction exceeded 
the maximum number of epochs or if the average loss per target node went below the error tolerance, the training direction 
was switched, and the error tolerance was updated if necessary. 

2.4   Hyperparameter tuning 

To establish a baseline performance from a standard neural network on the dataset for this model, hyperparameter tuning 
was performed on the BDNN models with the reverse function disabled. Hyperparameters consider were the model 
architecture, the number of hidden neurons, the number of epochs, the learning rate and weight decay. 287 hyperparameter 
settings were investigated. 

The hyperparameters considered when tuning the BDNN models were the model architecture, the number of hidden 
neurons, the number of epochs, the maximum number of epochs before training switched directions and the learning rates 
and weight decay for both the forward and reverse directions. In total, 751 different hyperparameter settings were tested 
during hyperparameter tuning. The hyperparameter settings for the best basic BDNNs can be found in Table 2. in the 
appendix of this report. 

For the majority of the hyperparameter tuning, cross-validation was not used. Instead, a random set of two participants’ 
data was selected as the validation set, reducing the time required for the hyperparameter tuning. 

2.5   Feature selection using GA 

In the GA used to select input features for the BDNN, each feature was represented by a binary number, where 1 represents 
including the feature, and 0 represents excluding the feature. Crossover was implemented using two-point crossover and 
mutation occurred through randomised bit flips. The fitness of the representation was found by calculating the accuracy 
from a BDNN model trained on the input features identified by the GA representation. Cross-validation was not used as 
it would slow the GA significantly. The BDNN model selected for the fitness function was the best performing two 
layered BDNN (Table 2.), as it would be faster to train then a three-layered model. Selection was implemented using 
tournament selection. GA setting values can be found in the appendix (Table 3).  
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Once the optimal input features were identified, a second round of hyperparameter tuning was implement on the BDNN 
using the selected input features. 596 different hyperparameter settings were tested. (See Table 4. for the hyperparameter 
settings and accuracies of the BDNNs with GA features selection.) 

2.6   Transfer learning using auto-associative networks 

The AANs used in this experiment had an architecture with three hidden layers and 119 input and 119 output features. 
The first and second hidden layers each had fewer hidden neurons then the previous layer, ensuring that the input 
information was compressed. The third hidden layer had the same number of neurons as the first hidden layer, resulting 
in a symmetrical layer structure (Fig. 2.). The ReLU function was used as the activation function for all layers. 
 

 
Fig. 2. AAN structure. The number of hidden neurons in each layer of the AAN models is greater than what is shown in the figure. 

For AAN training with shared weights, after each time the model was optimised, the weights and biases on each pair of 
symmetrical layers were updated by the average weight and average bias of the two layers, resulting in identical weight 
and bias values on each pair of symmetrical layers. For the AAN with bidirectional training, each time the model was 
optimised, the weights and biases of each pair of symmetrical layers were swapped, resulting in bidirectional training 
over the weights and biases. Each AAN was had hyperparameter tuning, with a total of 689 settings tested for the standard 
AAN, 434 settings tested for the AAN with shared weights and 534 settings tested for the AAN with bidirectional training. 
(See Table 5. for the hyperparameter settings for the best AAN models.) 

The BDNN models used with transfer learning was the ThreeLayerBDNN and the ThreeLayerBDNNReLU as those 
models had enough layers to implement two pretrained layers from the best performing AANs. Hyperparameter tuning 
was performed on the BDNN with either the first layer or the first two layers copied from the AAN models. During 
BDNN training, the parameters of the transferred layers were either fixed, optimised at the same learning rate as the rest 
of the model or finetuned, where the optimisation learning rate was significantly smaller than the rest of the model. A 
total of 331 settings were tested on the BDNN with the regular AAN transfer learning, 682 settings were tested for the 
BDNN with bidirectional AAN transfer learning, and 630 settings for the BDNN with shared weights AAN transfer 
learning. (See Table 6. for the hyperparameter settings and accuracies for the BDNNs with transfer learning.) 

3   Results and discussion 

3.1   Results using only pupillary dilation data 

The best result achieved by the BDNN when trained on only PD data was an accuracy of 56.8%. This model had a 
TwoLayerBDNN architecture. While above a chance level of performance, this result does not match the accuracy 
attained by Zhu et al. [1] of 58.3%. The BDNN’s performance only slightly improved on the accuracy of 56.0% which 
was achieved by the neural network using the same BDNN architecture but with the reverse function disabled. This 
suggests that BDNNs may not improve performance of distinguishing a presenter’s subject belief using the PD of the 
observer.  



From Fig. 3., it is evident that during the beginning of the training, the training accuracies are increasing as expected, 
once training is reversed at epoch 50, the training accuracy flattens out. In the test accuracy, the accuracy does not appear 
to significantly improve from the start of training, but the test accuracies remain mostly static after reverse training is 
introduced. This suggests that introducing a secondary goal to map cluster centres reduces the model’s ability to improve 
its accuracies in the forward direction. 

 

 
Fig. 3. Accuracies over number of epochs for the best BDNN model for PD data. Each line represents one cross-validation trial. 

3.2   Best overall performance 

The model that achieved the best overall accuracy had a ThreeLayerBDNN architecture. This model attained an accuracy 
of 61.1%, above both the result achieved by the original study’s neural network and that of an observer’s conscious 
judgement of 50% [1]. The non-directional neural network with the best accuracy also was trained using all features 
within the input data and achieved an accuracy of 58.0%.  

From these results, it appears that using a range of biometric data rather than only one type of biometric data improves 
the performance of the model. This makes sense, as the model can use the multiple types of features from the dataset and 
the interrelation between those features to determine the observer’s unconscious assessment of the presenter to form a 
result. This process also replicates how humans forms their assessments on the honesty of others. When judging whether 
others are speaking truthfully or with deceit, humans use a wide range of indicators rather than just a singular feature. 

3.3   BDNN performance vs non-BDNN performance 

There is only a small difference between the accuracies achieved by the bidirectional models and the non-bidirectional 
model. As with the models trained on PD information only, this indicates that the bidirectional functionality produces 
little improvement in producing an accurate result. 

Like with the PD training, once the model started training in the reverse directions, the accuracies remained relatively 
stable for the rest of the training. This was observed across most of the training performed using a BDNN architecture 
and the reinforces the perspective that the bidirectional functionality provides little to no improvement in accurately 
identifying subject belief. 

When comparing the testing accuracies of each cross-validation trial for both the best BDNN model (Fig. 4.) and the 
best non-BDNN model (Fig. 5.), it is evident that the accuracy of the results depend heavily on the participants within the 
test sets as each test set contains the data patterns measured from two participants in the original study. Both BDNN and 
non-BDNN results show drastically higher training accuracies compared to the test accuracies. These observations 
suggest that the specific biometric feature patterns that can be used to attain an accurate result for some people may not 
carry across for other people and that the models are overfitting to the training data. 



 
Fig. 4. Test accuracies over epochs for best BDNN model trained on all data 

 

 
Fig. 5. Test accuracies over epochs for best non-BDNN model trained on all data 

3.4   GA performance 

The feature selection representation with the highest fitness had a fitness level of 81.3%. However, after hyperparameter 
tuning was performed on the models using only the selected features, the highest accuracy attained with cross-validation 
was 56.5%, which did not improve on the regular BDNN performance.  

This may be due to limitations in the implementation of the GA. As shown in Fig. 6., the GA did not converge towards 
an optimal solution. Instead, performance of each generation was unstable. This could be caused by the limited area that 
the algorithm could explore in the feature space. Only a relatively small number of individuals and generations were used 
when running the GA, due to the amount of time fitness calculations took for each individual. Another reason why the 
GA did not converge may be due to the inconsistent accuracies produced by a BDNN, resulting with the fitness of a 
representation being unpredictable. During training, it was noticed that the same BDNN model can produce varying level 
of accuracies, which shows that BDNN performance has a high sensitivity to either the training and testing data sets, or 
the initialisation of the model parameters.  



 
Fig. 6. Fitness values across GA iterations from one of the GA runs. 

3.5   Transfer learning performance 

The best performance achieved by a BDNN using transfer learning was an accuracy of 57.7%. This was achieved by three 
different transfer learning models: fixed parameters from a bidirectional AAN, fixed parameters from a regular AAN and 
finetuned parameters from a regular AAN. As demonstrated in Fig. 7., results suggest that fixed parameters perform best 
for BDNN transfer learning. A reason behind this may be the training restriction that fixed weights causes, which prevents 
the BDNN model from overfitting to the training data.  

The regular AAN appeared to perform best in terms of accuracy out of the three types of AANs. However, further 
investigation is needed, focusing on the performance of the BDNNs in the reverse direction, before the best transfer 
learning model for BDNNs is established, as the bidirectional AANs and the shared weights BDNN were hypothesized 
to improve the reverse performance of BDNNs due to the symmetry of their weights.  
 

 
Fig. 7. Best accuracies achieved by BDNNs using transfer learning. 

While the results did not improve on the accuracy achieved by the base BDNN, transfer learning for BDNNs still shows 
potential as a usable technique, as the best accuracy achieved is not significantly below that of the base BDNN. Further 
hyperparameter tuning may achieve results similar or greater than the base BDNN. 

3.6   Limitations and improvements 

Due to the size of the dataset provide, and the limited number of participants used to generate the data, this dataset may 
not capture a wide range of the unconscious response to a presenter’s subject belief. As a result, the models trained on 
this data may have difficulty generalising the patterns that identify whether the presenter has a manipulated or 
unmanipulated belief and may not produce very accurate results if used on the general populace. One technique that may 
mitigate this issue is to reverse the training direction after training on one data pattern instead of after a certain number 
of epochs. This will increase the noise during training and may reduce the model’s tendency to overfit. 

0.49
0.5

0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

 Bidirectional AAN Shared Weights AAN Regular AAN

Ac
cu
ra
cy

AAN Transfer Learning Best Performance

Fixed Finetuned Same



There was difficulty in replicating model results, even when identical training settings were used. This suggests that 
model performance high dependence on the initialisation of weights and the order in which patterns were passed through 
the model during training, as these factors were the only randomised factors during model training.  

As a majority of the hyperparameter tuning was not performed with cross-validation, this may have limited the search 
for the overall best hyperparameters. This was evident as the best hyperparameter tuning results achieved accuracies of 
81.3% for the base BDNNs, the BDNNs using GA feature selection and the BDNNs using transfer learning. However, 
when cross-validation was implemented on a subset of the hyperparameter settings achieving the highest hyperparameter 
tuning results, the settings initially achieving 81.3% did not necessarily produce the best cross-validation accuracy. 
Hyperparameter tuning can be improved by evaluating hyperparameter settings using the cross-validation accuracy, 
though this will drastically increase the time needed for hyperparameter tuning.  

4   Conclusion and future work 

While BDNNs have some ability in distinguishing manipulated from non-manipulated subject belief using an observer’s 
pupillary response, they were not able to match the accuracy achieved by Zhu et al.’s [1] neural network which was 
trained in only one direction. When trained with additional biometric information including skin temperature, GSR and 
BVP, the BDNN’s accuracy could exceed Zhu et al.’s [1] result and achieve a 61.0% accuracy. This result also exceeded 
the baseline accuracy produced in this study of 58.0% from a standard neural network. However, further examination is 
required to determine whether the bidirectional functionality of the neural network improves the overall accuracy of the 
model. 

This study could not utilise the full benefits of GA feature selection due to non-convergence of the GA during 
implementation. Results achieved in this study suggest that GA feature selection does not improve the accuracy of a 
BDNN. To fully explore this area, a greater population size and number of generations should be used in the GA. A larger 
dataset may also improve the stability of the GA fitness function. 

The best performance achieved by a BDNN using AAN transfer learning was an accuracy of 57.7%. Results suggest 
that fixing the parameters of transferred layers during BDNN produces the best performance, as this may reduce the 
amount of overfitting in the model. The regular AAN appeared to perform the best out of the three types of AANs used 
in transfer learning in terms of accuracies. However, to determine whether transfer learning improved the overall 
performance of the BDNN model, additional investigation on the performance of the BDNN in the reverse direction, such 
as error metrics, should be taken. 

An area that could be investigated regarding the dataset include the impact of the presenter on the accuracies on the 
finding. Zhu et al. [1] found in their study that the accuracy from one of their presenters was 60% higher than the other 
presenter. A similar effect may have happened with this dataset, which provide a greater insight into the overall accuracies 
of this study’s models.  
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Appendix 

Table 2. Hyperparameter settings and accuracy of basic BDNNs. Note that the following models had a batch size of 1 and weight 
decay of 0 

  Model 
Architecture 

Training 
data 

No. of 
hidden 
neurons 
(layer 1) 

No. of 
hidden 
neurons 
(layer 2) 

No. of 
epochs 

Max no. of 
epochs per 
direction 

Learning 
rate 

(forward) 

Learning 
rate 

(reverse) 
Accuracy 

Best BDNN 
(PD data) 

TwoLayer 
BDNN PD only 72 - 200 50 0.001 0.015 56.80% 

Best non-
BDNN (PD 

data) 

TwoLayer 
BDNN PD only 56 - 200 60 0.002 0.01 56.00% 

Best BDNN 
(overall) 

ThreeLayer 
BDNN All data 24 72 200 10 0.0025 0.02 61.10% 

Best non-
BDNN 

TwoLayer 
BDNN All data 56 - 200 60 0.002 0.01 58.00% 

 

Table 3. Training settings for the GA 

Representation 
type 

Representation 
length 

Cross-over 
probability 

Mutation 
probability Population size Number of 

generations 
Number of 
GA runs 

List of binary 
numbers 119 0.8 0.2 20 - 50 20 - 60 5 

 

Table 4. Hyperparameter settings and accuracy of BDNNs with GA feature selection.  

  Model 
Architecture 

Batch 
size 

No. of 
hidden 
neurons 
(layer 1) 

No. of 
hidden 
neurons 
(layer 2) 

No. of 
epochs 

Max no. 
of 

epochs 
per 

direction 

Learning 
rate 

(forward) 

Learning 
rate 

(reverse) 

Weight 
decay 

(forward) 

Weight 
decay 

(reverse) 
Accuracy 

Best 
BDNN 
w/ GA 
features 
selection 

ThreeLayer 
BDNNRelu 50 32 32 1000 75 0.00543 0.02711 0.01985 0.06691 56.80% 

 

Table 5. Hyperparameter settings of AANs.  

  Batch size No. of hidden 
neurons (layer 1) 

No. of hidden 
neurons (layer 2) No. of epochs Learning rate  Weight decay  

Best regular AAN 40 110 50 1000 0.00459 0.00183 
Best bidirectional AAN 50 110 50 200 0.00767 0.31031 

Best shared weights AAN 50 100 90 1000 0.02227 0.00008 

 



Table 6. Hyperparameter settings and accuracies of BDNNs with AAN transfer learning.  

AAN model 
Transfer 

layer 
optimisation 

No. of 
transferred 

layers 
(TL) 

Model 
Architectur

e 

Bat
ch 

size 

No. of 
hidden 
neurons 
(layer 1) 

No. of 
hidden 
neurons 
(layer 

2) 

No. of 
epochs 

Max no. 
of 

epochs 
per 

direction 

Learning 
rate 

(forward) 

TL 
Learning 

rate 
(forward) 

Learning 
rate 

(reverse) 

TL 
Learning 

rate 
(reverse) 

Weight 
decay 

(forward) 

TL 
Weight 
decay 

(forward) 

Weight 
decay 

(reverse) 

TL 
Weight 
decay 

(reverse) 

Accuracy 

Regular Fixed 1 ThreeLayer 
BDNN 50 110 32 150 20 0.02846 0 0.01381 0 0.08918 0 0.25386 0 57.7% 

Regular Finetuned 2 ThreeLayer 
BDNN 1 110 50 300 10 0.02757 0.00087 0.00772 0.00149 0.05703 0.28964 0.23222 0.12389 57.7% 

Bidirectional Fixed 1 ThreeLayer 
BDNN 50 110 16 300 20 0.01462 0 0.01047 0 0.02488 0 0.28690 0 57.7% 

Shared 
weights Fixed 2 ThreeLayer 

BDNN 10 100 90 150 20 0.00355 0 0.02988 0 0.18874 0 0.32544 0 56.5% 

Bidirectional Same 2 ThreeLayer 
BDNNRelu 1 110 50 500 20 0.02922 0.02922 0.02465 0.02465 0.14756 0.14756 0.46164 0.46164 55.1% 

Bidirectional Finetuned 2 ThreeLayer 
BDNN 30 110 50 150 10 0.04198 0.00044 0.01390 0.00378 0.05192 0.22658 0.10904 0.16568 54.8% 

Regular Same 2 ThreeLayer 
BDNNRelu 20 110 50 300 20 0.03182 0.03182 0.04717 0.04717 0.42656 0.42656 0.26991 0.26991 54.0% 

Shared 
weights Same 1 ThreeLayer 

BDNN 1 100 128 150 20 0.04892 0.04892 0.04151 0.04151 0.38240 0.38240 0.47678 0.47678 53.7% 

Shared 
weights Finetuned 1 ThreeLayer 

BDNN 10 100 128 300 20 0.03943 0.00389 0.01468 0.00340 0.32640 0.29265 0.25497 0.45703 52.6% 

 
 


