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Abstract. Music is closely related to our life and can affect our moods and feeling. This paper uses one
channel of the EEG data, generated while the participant is listening to music[9], to train a classification
neural network. The feature and hyperparameter selection were made by using the genetic algorithm. The
trained classifier performs poorly on the testing set, far from the original paper, indicating that one channel
of the EEG data cannot reveal the type of music participants are listening to.
Pruning redundant neurons can help decide the number of neurons in the hidden layer of a neural network,
which is very important for today’s increasingly deep neural networks since it is challenging to decide the
number of hidden neurons by human experimentation. Also, pruning the branches helps generalize the neural
network. We want to show that the weight matrix in [4] can be used as an indicator of the function of hidden
neurons. In the process of trying this, we found that changing the normalization method can make the weight
matrix perform better. We perform experiments on the music effect dataset, pruning bit by bit and calculating
the minimum angle between the weight matrix and neuron behavior separately. The experiments show that
the improved weight matrix performs much better than the original weight matrix and can approximate the
neuron behavior indicator.
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1 Introduction

Nowadays, the application of neural networks is becoming more and more widespread. For example, deep learning,
the most cutting-edge neural network, is utilized in many fields such as speech recognition[2], language translation[1],
and autonomous driving[6]. Although there are very powerful GPUs and other processors that can help us apply
this technology to large data sets now, it is a highly complex task to manually set up and try to find the number
of neurons for each layer[11]. Therefore, pruning is essential. Pruning not only helps to decide how many neurons
are appropriate for the current network, which can reduce redundancy, save computational time and memory cost,
but also increases the generalization of the neural network, helping it not overfit the training and to perform well
on the testing set.

To better perform pruning, we aim to find a good indicator of hidden neuron functionality. According to [4],
they built a weight matrix indicator, but it failed to perform well on their dataset. In this paper, we test this weight
matrix indicator again on a different task and propose an improved weight matrix that approximates the neuron
behavior indicator mentioned by [4] as a benchmark.

Music is an important part of our daily life. We always feel that listening to different kinds of music can elicit
different kinds of emotions. It was proved that music could improve our mood and decrease our anxiety[8]. Relaxing
classical music can help us sleep better[7]. In the paper [9], they show that we can use the EEG brainwave signal
to identify which category of music people are listening to. The electroencephalogram (EEG) is a commonly used
signal for people to understand brain activity[9]. EEG signal can be divided into Delta(δ), Theta(θ), Alpha(α),
Beta(β), and Gamma(γ) five frequency bands. Each wave represents a different state of people. In this paper, we
attempt to use only one channel of EEG data in [9] to build a neural network classifier, which classifies which kind
of music the participants listen to.

Using high dimension features can bring adverse effects to the classification if some features are irrelevant or
redundant.[13] The high dimensionality of the data also increases the computation time. Feature selection can solve
those problems by removing unnecessary features and reduces the dimension of input data. Hyperparameter tuning
is also vital for the functionality and accuracy of neural networks.[12] Selecting the best hyperparameters is one
of the most major challenges for neural network design. Genetic algorithm is found effective in both feature and
hyperparameter selection.[13][12] Therefore, in this paper, we combine these two types of things that need to be
selected, using a genetic algorithm to accomplish selection to get the best input and model setting.
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Our classifying experiment is a failure even with feature and hyperparameter selection. Only one channel of
EEG data cannot train a good classifier. However, since it is a well-trained neural network, this classifier can still be
used to test the hidden neuron function indicator. We use this network to perform pruning and analyze indicators
of hidden neuron functionality.

The paper is organized as follows: Section 2 describes the dataset and the methods we used to complete our
study. In section 3, we explain the results and discuss the cause of those results. Section 4 presents a conclusion
and describes the possible future work to dig deeper.

2 Materials and Methods

2.1 Datasets

The dataset we used is the brain wave data captured by EEG, which was used to analyze the effects of different
kinds of music[9]. There were 24 participants in their experiment. Each participant was asked to listen to two out
of three categories of music: classical, instrumental, and pop[10]. The total music categories are balanced among
all participants. They collected participants’ brain waves through Emotiv EPOC headset. The Emotiv EPOC
provided them 14 channels of data, and the sampling rate they used was 128 Hz. Our experiment only use one of
those channels, the F7 channel, which was one of the most informative channels according to their description. They
filtered the raw signal by median smoothing filter to deduct noise and then applied band pass filtering to keep alpha,
beta, and gamma waves they were interested in. After that, each person’s data was processed into 12 patterns per
category; each pattern consists of 25 linear and non-linear features they extracted from the waves. Table 1 shows
those features. In conclusion, the dataset we used is a subset of them. It only contains the F7 channel’s 25 features
from 24 participants, labeled with the category of music they were listening to.

Table 1. Feature types and names[9]

Feature type Feature names

Linear Mean, Maximum, Minimum, Standard Deviation, Interquartile Range, Sum, Variance, Skewness, Kurtosis,
Root Mean Square, Average of the power of signals, Peaks in Periodic Signals, Integrated Signals,

Simple Square Integral, Means of the absolute values of the first and second differences, Log Detector,
Average Amplitude Change, Difference Absolute Standard Deviation Value

Non-Linear Detrended Fluctuation Analysis, Approximate Entropy, Fuzzy Entropy, Shannon’s Entropy,
Permutation Entropy, Hjorth Parameters, Hurst Exponent

2.2 Prepocessing

Due to the large number of features, we only present the descriptive statistics of a few representative features in
Table 2. The complete statistics for all features are shown in the Appendix. Through Table 2 we can observe that
there are outliers in the fuzzy entropy data. The 75th percentile of all fuzzy entropy data is only 1.7471, but the
maximum is 65535, which is equal to 216 − 1 a common error value. Therefore, we eliminate the pattern with fuzzy
entropy of 65535 in preprocessing. We did not observe this problem in other features.

Table 2. Descriptive statistic of some features in the original data

mean F7 max F7 min F7 std F7 sum F7 fuzzy F7 shannon F7 pe F7 hurst F7

mean 1.8191 6.3541 0.2438 1.9005 24.8340 457.7391 0.9390 0.4759 0.6917

std 2.5700 9.7837 0.7636 2.9311 37.0508 5,446.7663 0.2530 0.2042 0.2865

min 0.1772 0.3311 0.0000 0.0581 1.3113 -0.0909 0.2338 0.0000 0.1354

25% 0.4897 1.2277 0.0057 0.3637 6.0505 0.5054 0.6886 0.2181 0.4910

50% 0.8148 2.0145 0.0153 0.5800 9.7277 0.9074 0.9503 0.5812 0.6031

75% 1.6324 6.1330 0.2309 1.8853 23.7085 1.7471 1.1034 0.6373 0.8874

max 21.3101 49.6533 14.5919 16.2437 230.5620 65,535.0000 1.3705 0.7245 1.5707

After excluding the outliers, we randomly divide about 80 percent of the data into the training set and the
rest of them into the testing set. The data from the training set is first used in the genetic algorithm to obtain
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the optimal feature selection and optimal neural network hyperparameters, then used in the final neural network
training process. The test set data is only used to test the final neural network. During the genetic algorithm, for
each evaluation of each individual, we further split the training set from the above step into 80% for the training
set and 20% for the validation set. More details are included in section 2.5. In all dividing procedures, we artificially
let data from one person be in the same set to make sure our results are as objective as possible.

The different feature contains different information; they may be all important for classifying. However, the
difference of each feature’s range has a great impact on how well the neural network classifies. As we can see in
Table 2, the scopes of our features are varied. For example, the maximum of permutation entropy(pe) is less than
the minimum of sum, but that should not mean the permutation entropy is less important. Therefore, after each
data division, we use the Min-Max normalization method to bring all features in the training set within the range
0-1 to avoid some features dominating the classification process. We normalize all features respectively and then
use those parameters, the min and max, to normalize the testing set (validation set).

2.3 Classifier

Same as the original paper of this music affects dataset[9], we use a simple neural network with one input layer, one
hidden layer, and one output layer. A sigmoid activation function is used in the hidden layer since it is not a deep
network. We choose cross-entropy loss as our loss function and use Adam optimizer to perform backpropagation.
The hyperparameters and the feature we finally selected are gained using the genetic algorithm.

2.4 Evaluation Measures

We use accuracy, precision, recall, specificity, and F-measure to evaluate our classification result comprehensively.
Accuracy describes the percentage of correctly classified data out of the total data. Recall represents how many
positive samples are correctly classified. Specificity is the ratio that a negative sample is correctly classified. F-
measure is calculated by the harmonic mean of recall and precision. It is another kind of accuracy to assess the
goodness of the classifier.[14] Their equations are shown below:

Accuracy =
TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative
(1)

Precision =
TruePositive

TruePositive+ FalsePositive
(2)

Recall =
TruePositive

TruePositive+ FalseNegative
(3)

Specificity =
TrueNegative

TrueNegative+ FalsePositive
(4)

F −measure =
2 × TruePositive

2 × TruePositive+ FalsePositive+ FalseNegative
(5)

2.5 Feature and Neural Network Hyperparameter Selection

We use the genetic algorithm to select the most valuable features and the hyperparameters of our neural network.
Our chromosomes have 28 genes. For the first 25 genes in the chromosome, we use binary encoding to encode

feature selection. Each of these genes represents a different feature. The gene value equal to one means its corre-
sponding feature was selected; otherwise, it was not. The 26th, the 27th, and the 28th gene were encoded use values.
The 26th gene is an integer from 4 to 50 stands for the number of hidden neurons. The lower bound of 4 neurons is
chosen because the number of hidden neurons in a network for classification is usually not less than the number of
output neurons. The upper limit of 50 neurons is chosen because there are only at most 25 input features, and too
many neurons are redundant based on our experience. The 27th gene is a float from 0 to 1, representing our neural
network’s learning rate. The 28th gene describes the number of training epochs. We encode it as an integer from 4
to 20. If the value of this gene is 4, the number of training epochs is 4× 500, which is 2000. The same holds for the
rest of the values. The range of values for this gene was chosen empirically.

The F-measure of the validation set is chosen as our fitness value. Our goal is to maximize this fitness. The
F-measure is used because the accuracy tends to be affected by the data distribution of the validation set, and our
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validation set usually has data from only four people. The data for each person has only two categories. Therefore
the distribution is likely to be unbalanced.

Each time we evaluate the fitness value of an individual, we randomly reassign the training and validation
sets to avoid overfitting to particular training and validation set assignment. Usually, the genetic algorithm only
recalculates the fitness value of an individual that has changed. However, we have observed in our experiments that
some individuals who are not generalizable may happen to have a high fitness value due to the randomness of the
training and validation set assignment, as well as the randomness in the initialization of the model parameters.
Such bad individuals are survived in the generation due to their high fitness value and are output as the best
choice. Therefore, in our implementation, we recalculate the fitness value of all individuals in the population at each
generation to ensure that we end up with the best individual that performs well in every random situation. This also
facilitates our offspring to search around generalizable individuals to find individuals that can combine generalization
and good performance. Choosing to reassign the dataset at each iteration and recalculate the fitness value, instead
of using k-fold cross validation to reduce the effect of randomness, is due to the limited computational resources we
have and the high probability of an individual being changed. Besides, the measure we choose is sufficient for our
needs according to our observation.

We use Tournament Selection of the tournament size three and Uniform Crossover method. We set the population
size to be 100 and we terminate evolution when the number of generation achieve 40. The crossover probability of
an individual is 0.5. The independent probability for each gene to be exchanged is 0.3. There is a 0.2 probability
that an individual will be mutated. The independent probability for each gene to be mutated is 0.1.

2.6 Pruning and Different indicators

Pruning and Neuron Behaviour We prune the network according to the distinctiveness of hidden neurons[5].
Assume our input is an M × N matrix, M is the number of features, N is the number of samples. Assume the input
layer is fully connected with the hidden layer. The size of the output activation vector of each hidden neuron is N
× 1. It consists of the activated outputs of the specific hidden neuron from every sample in the dataset. Through
those output activation vectors, we can derive the distinctiveness of hidden neurons. The output activation vector is
an indicator of hidden neuron functionality called neuron behavior in [4]. We can use the angle between two output
activation vectors to recognize the similarity of two hidden neuron’s functionality. Before calculating the angle, we
normalize the vectors to [-0.5, 0.5], which can help us get the angle between 0-180◦.

In standard pruning, if this angle is less than 15◦, those two hidden neurons are considered to be similar to each
other. One of them can be pruned and add its weight matrix to the other without harming the network’s capability.
If this angle is greater than 165◦, the two vectors are believed to complement each other. Both of them could be
removed, and the network should still act almost the same.

Nevertheless, in our experiment, same as the original test of weight matrix indicator [4], we only focus on the
quality of different hidden neuron indicators. We are not concerned with whether it is similar or complementary,
which can all be regarded as identical. We just want to distinguish between identical and orthogonal. Hence, we
remapped the angles to 0-90◦ and progressively pruned one of the two hidden neurons whose angle is the minimum
between all angles each time.

Before each pruning, we calculate the minimum angle among the angles of all hidden neuron pairs based on
three indicators, i.e., the weight matrix indicator, the improved weight matrix indicator, and the neuron behavior
indicator, for comparison. The angle here is also between 0 and 90◦. The calculation steps for the weight matrix
indicator and the improved weight matrix indicator are as follows.

Weight Matrix Besides the output activation vector, we are also interested in checking the distinctiveness of the
weight matrix since it was declared to be not sufficient to describe the hidden neuron functionality in [4] for their
task. According to their design, we use the weight matrix between the input layer and the hidden layer. Assume
our input is an M × N matrix, M is the number of features, N is the number of samples as we described before.
Assume we have H hidden neurons in the hidden layer. The weight matrix we get should be an M × H matrix. The
weight matrix should be normalized by its global minimum and maximum and then divide into H M × 1 vectors
as the weight indicator for each hidden neuron.

Improved Weight Matrix We change the normalization method to improve the weight matrix indicator. Instead
of normalizing the entire weight matrix using its global maximum and minimum, we divide the weight matrix into
weight vectors first and then apply Min-Max normalization to every vector independently. In this way, each hidden
neuron is treated separately. It is beneficial for us to calculate the angles.
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The experiment uses Python, PyTorch, and DEAP[3] with an Intel® CoreTM i7-8650U CPU with 1.90 GHz,
16.00 GB of RAM, and Microsoft Windows 10 64-bit operating system. The parts of preprocessing, and selecting
feature and hyperparameter with the genetic algorithm are run only once. The other parts, i.e., classifying use neu-
ral network with the feature and hyperparameter we selected, progressively pruning, and calculating the minimum
angle of the three indicators before each pruning, are repeated 20 times to avoid the effects of randomness. The
averages of the results are used for evaluation.

3 Results and Discussion

3.1 Feature and Hyperparameter selection
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Fig. 1. Maximum Mean and Minimium Fitness during Evolution

Fig. 1 shows the change in maximum, mean, and minimum fitness values as the number of generations increases.
Unlike the general genetic algorithm results graph, our maximum fitness line is very uneven. This is not due to
a genetic selection error or a too high probability of variation, but because our fitness is affected by randomness
and we choose to recalculate the individual fitness values every generation. As we can see from the graph, there
is little difference between fitness values after 40 generations and the initial generation, with only a slight increase
in the mean fitness value. Given that the initialization, crossovers, and mutations are random and the probability
of mutation is not very small, we can basically be sure that we are searching in a space where convergence is not
very good. Therefore, the best individual retained to the last must be better than an entirely randomly generated
individual, since at least this one performs consistently over some iterations, but we cannot ensure that the one
we have selected is the global optimal. The best individual at the last generation is shown in Table 3. We use the
selection it represents to complete the subsequent experiments.

Table 3. The best individual and its meaning

best individual
[0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0,
25, 0.06733994248408581, 10]

selected features
[’max F7’, ’min F7’, ’var F7’, ’sum F7’, ’krt F7’, ’mean first diff F7’,
’abssum F7’, ’var F7.1’, ’log F7’, ’aac F7’, ’shannon F7’, ’pe F7’]

selected number of hidden neurons 25

selected learning rate 0.06733994248408581

selected number of epochs 5000
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3.2 Classification

Table 4. Classification Results

Accuracy Precision Recall Specificity F-measure

Training 86.78% 86.77% 86.64% 93.37% 86.71%

Testing 35.38% 35.14% 34.91% 67.44% 35.02%

Table 4 shows the result of how our classifier performs on the music effect dataset with the features we selected.
All evaluations for the training performance are over 85%. The classifier can correctly classify all three labels in
most of the situations in the training set. However, according to the testing performance, the accuracy of testing is
35.38%, the classifier performance is only slightly better than randomly choosing a label; it is not enough. Essentially,
we can conclude that the classifier is a failure product. The precision, recall, specificity, and f-measure also prove
that. Notice that the specificity 67.44% is much higher than the other criteria is because we calculate it by the
mean of three binary classifications of each label. Bases on the data distribution, 33% of data are labeled positive,
the remaining 67% of data are labeled negative. As a result, the specificity of a random choice classifier is 67%,
which is very close to the result 67.44% of our classifier. In the original paper [9], their accuracy is over 95%, and
all other evaluators are over 90%.

Since we already use the genetic algorithm to select features and hyperparameters, we can conclude that the
failure of our classification is because the F7-channel data we used is not enough to train a classifier. There are a
total of 14 channels of data the original paper[9] used. The different channel contains different information, and
there might be some synergistic effect between different channels. We cannot train an effective classifier only by the
F7-channel data. In addition, the original paper use Levenberg—Marquardt methods as the training function of
their network. That is different from our choice. This difference may somehow influence the classifier’s performance,
but it should not be the main reason.

3.3 Indicators of Hidden Neuron Functionality
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Fig. 3. Change of accuracy during pruning

From the neuron behavior in Fig. 2 we can see that, in the beginning, the minimum angle between all pairs
of hidden neurons is already about 20, which is higher than the standard 15. Therefore, all 25 hidden neurons are
somehow helpful for the classification. This observation verifies that the selection result of our genetic algorithm is
meaningful. Fig. 3 shows the change in classification accuracy on the training set as the number of hidden neurons
decreases. The pruning of the first five or six least significant neurons strongly influences the performance of our
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classifier on the training set. Due to the accuracy after the sixth pruning is already less than 40% close to the
accuracy of a random choice, we cannot say the rest of the hidden neurons are not important. Actually, they should
also be essential because the angle between them and other hidden neurons is higher than the first five or six neurons
we pruned. This also proves that all hidden neurons in our network are crucial for our classifier.

Another observation is that, as we can see in Fig. 2, the improved weight matrix performs better than the original
weight matrix. The minimum angle of the original weight matrix is as coarsen as described in [4]. Moreover, the
minimum angle of the neuron behavior basically progressively increases during the pruning. Although the improved
weight matrix indicator is not as good as the neuron behavior indicator for the first 10 neurons, the latter part of its
curve is also on the rise, which is roughly consistent with our baseline neuron behavior indicator. On the contrary,
the original weight matrix indicator behaves very inconsistently with the baseline—the minimum angle decrease in
the first 15 pruning. We can conclude that the original weight matrix is not a good indicator; its value is unstable
and meaningless. The improved weight matrix is a better indicator. It is not as good as neuron behavior in terms
of the span of angle values and it may be a little wrong about the first few angles, but it can be in rough agreement
with neuron behavior in other aspects.

4 Conclusion and Future Work

This paper tries to use a neural network to classify the EEG brainwave data from the F7 channel to see whether
it can correctly determine the type of music the participant is listening to. We first delete some outliers from the
dataset and then use Min-Max to normalize the data so that features can be learned balanced. Then we use the
genetic algorithm to select the features and hyperparameters of our neural network to find the optimal settings.
The experiments demonstrate that a qualified classifier cannot be trained by a neural network using only the F7
channel EEG data. Of course, the loss function used in our experiments is slightly different from that in the original
paper[9], but we do not think this is the main factor for the failure.

Although the classifier does not work well, it has highly accurate for the training set, indicating that the network
has been trained. We perform a gradual pruning on this network by cutting off one of the two most similar hidden
neurons decided through the output activation vector, and calculating the minimum angle between the original
weight matrix, the improved weight matrix and the neuron behavior indicator before each pruning. Comparing with
the minimum angle of neuron behavior indicator, We conclude that by changing the weight matrix normalization
method, the improved weight matrix is a better indicator than the weight matrix in the original paper. The trend
of the minimum angle calculated by the improved weight matrix and neuron behavior is basically the same after
each pruning.

Since the neural network does not well classify the dataset used in our experiments, we are not sure whether the
improved weight matrix indicator can correctly reflect the neuron’s function because it is evident that the accuracy
of the training set alone is not objective. So if we want to know whether the improved weight matrix is a good
indicator that can be used for pruning, we should also test on a good classifier. For example, use angles obtained
from the improved weight matrix to determine the functionally similar neurons and prune them based on this result.
Using this pruned classifier performs a test on the testing set to see whether the function of the neural network
remains basically the same as the original one after pruning the similar neurons. If our improved weight matrix can
pass those tests, it will be a qualified hidden neuron indicator and can be used more widely.

In addition, bias should also reflect the function of neurons to some extent. We can consider whether bias can
also be part of the weight matrix indicator somehow in the future, instead of simply discarding this vital element.
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Appendix

Table 5. Descriptive statistic of the original data (1)

mean F7 max F7 min F7 std F7 iqr F7 var F7 sum F7 skw F7

mean 1.8191 6.3541 0.2438 1.9005 1.9022 12.1885 24.8340 0.8573

std 2.5700 9.7837 0.7636 2.9311 2.9344 33.3888 37.0508 0.7728

min 0.1772 0.3311 0.0000 0.0581 0.0229 0.0034 1.3113 -1.3682

25% 0.4897 1.2277 0.0057 0.3637 0.5141 0.1323 6.0505 0.3202

50% 0.8148 2.0145 0.0153 0.5800 0.8076 0.3365 9.7277 0.7739

75% 1.6324 6.1330 0.2309 1.8853 1.5149 3.5542 23.7085 1.4211

max 21.3101 49.6533 14.5919 16.2437 22.0970 263.8577 230.5620 2.3908

Table 6. Descriptive statistic of the original data (2)

krt F7 mean first diff F7 mean second diff F7 rms F7 abssum F7 ssi F7 var F7.1

mean 3.1366 1.0634 1.5048 2.6298 24.8340 300.9961 23.3238

std 1.6263 1.6182 2.3566 3.7680 37.0508 820.3931 64.6009

min 1.1424 0.0708 0.0899 0.2281 1.3113 0.3272 0.0548

25% 1.8407 0.2250 0.3230 0.6410 6.0505 5.1826 0.4408

50% 2.5394 0.3711 0.5296 1.0047 9.7277 11.8466 1.1353

75% 4.0734 0.9841 1.3028 2.4432 23.7085 90.1521 6.6862

max 7.3014 9.9750 16.5380 22.2852 230.5620 6,994.3128 595.9555

Table 7. Descriptive statistic of the original data (3)

mav F7 log F7 aac F7 dasdv F7 dfa F7 fuzzy F7 shannon F7 pe F7 hjorth F7 hurst F7

mean 1.8191 0.9327 1.0838 1.6615 1.1966 457.7391 0.9390 0.4759 0.6291 0.6917

std 2.5700 1.5831 1.6455 2.5528 1.8581 5,446.7663 0.2530 0.2042 0.1553 0.2865

min 0.1772 0.0916 0.0746 0.0972 0.0075 -0.0909 0.2338 0.0000 0.2529 0.1354

25% 0.4897 0.2133 0.2207 0.3129 0.1958 0.5054 0.6886 0.2181 0.5172 0.4910

50% 0.8148 0.4110 0.3715 0.5080 0.4145 0.9074 0.9503 0.5812 0.6574 0.6031

75% 1.6324 0.9400 0.9992 1.5659 1.2240 1.7471 1.1034 0.6373 0.7273 0.8874

max 21.3101 20.4723 10.6854 13.0023 15.1211 65,535.0000 1.3705 0.7245 1.0382 1.5707


