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Abstract. Depression is an internalizing mental disorder but conventional diagnosis to detect depression may be 
subjective and time-consuming. In this paper, we start with a simple fully connected neural network to classify 
depression based on observers’ physiological signals. We observe that having a large number of hidden units might 
decrease the overall efficiency, therefore we implement the distinctiveness pruning technique to remove insignificant 
and redundant neurons. We then apply Genetic Algorithm (GA) or Bayesian Optimization (BO) to tune the network by 
selecting a set of effective hyper parameters. We aim to slim down the model and improve the overall accuracy of 
neural network predictions. Our findings show that the overall accuracy predicted on the full set of features has 
increased from 29.2% (baseline) to 32.3% (distinctiveness pruning), 38.0% (distinctiveness pruning and GA), and 
39.1% (distinctiveness pruning and BO). The application of pruning on the static weight matrix of the model and GA 
or BO on hyper parameters selection result in a significant increase in the model’s accuracy. 
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1   Introduction 

In this section we introduce the background of the issue, current situations, related work, and an outline of the 
improvements we made on the existing model in attempt to increase the effectiveness of the model. 

1.1   Background 

Depression is a mental health disorder characterized by persistent depressed mood or loss of interest in activities, and is 
causing significant impairment in daily life [1]. Depression is currently affecting more than 264 million people worldwide 
according to WHO statistics [1]. It is a leading cause of disability around the world and contributes greatly to the global 
burden of disease. The effects of depression can be long-lasting or recurrent and can drastically affect a person’s ability 
to function and live a rewarding life.  

1.2   Motivation 

The causes of depression include complex interactions between psychological and biological factors [1]. Unfortunately, 
current diagnosis to detect depression may be time-consuming and subjective [3]. Recent advances made in affective 
computing technology demonstrate the possibility of using physiological signals to assist diagnosing depression [2]. By 
applying neural network (NN) learning in depression classification, it would increase the efficiency and accuracy 
compared to traditional diagnosing method. In this paper, we train neural networks on observers’ physiological signals to 
detect depression levels of individuals in videos, then explore two potential improvements. 

1.3   Dataset 

Zhu et al. collected observers’ physiological response signals such as Galvanic Skin Response (GSR), Skin Temperature 
(ST) and Pupillary Dilation (PD) to classify individuals’ depression level [3]. For all these three physiological signals, 
they applied a min-max scaler normalization method to reduce the between-participant differences, which scaled signals 
to the range between 0 and 1. After the normalization process, they smoothed the signals to remove noise artifacts, and 
then extracted a number of features for each signal, including minimum, maximum, mean, standard deviation, variance, 
root mean square etc. They collected a total of 85 features from the three physiological signals: 23 (GSR) + 39 (PD) + 23 
(ST), each signal with their extracted features saved in a separate excel files. The output depression level shown on the 
second column of each file (depr_label) has four depression categories: minimal, mild, moderate and severe depression 
which are encoded by integers 0, 1, 2, 3 respectively [3]. Some feature inputs may not be closely relevant to the 



classification task and the dataset may benefit from feature selection process. Due to time constraint, we will discuss this  
data preprocessing in Future Works. 

1.4   Investigations 

We implement three potential improvement models on the baseline neural network: NN with two hidden layers, 
distinctiveness pruning applied on the single hidden layer, and hyper parameters optimizations via GA or BO to train the 
pruned network. We compare the performances of the existing model to ours on the same training and testing data. We 
see that the latter two variations have improved accuracies over the baseline. 

2  Methodology 

The original model by Zhu et al. is a simple one hidden layer fully connected neural network classification model with 
up to 85 features as input and the four classes of depression as output. This NN model has a sigmoid hidden layer of size 
50. The output layer of four output neurons represents the four depression classes (They chose 50 as the number of hidden 
neurons after a series of accuracy tests because they found that between the range of 1-100 hidden unit sizes, 50 is optimal 
and gives the best overall performances). The NN uses Cross-Entropy loss function to evaluate deviations of the model 
predictions from ground truth and was trained using backpropagation with the Adam optimizer [3]. In our study we use 
the same implementation of this fully connected NN model as our baseline. We attempt three enhancements on this model. 
The first variation includes a second hidden layer in addition to the original. The second include only the original hidden 
layer, but some neurons are pruned via distinctiveness pruning method to reduce the model complexity. The third uses 
the same network as the second, but additionally uses GA or BO to tune all hyper parameters. For all the models, we use 
the same Zhu et al.’s pre-processed dataset. The models are adapted to 4 combinations of signals: 1) GSR+ST+PD; 2) 
GSR; 3) ST; and 4) PD. The first one, GSR+ST+PD concatenates all signal features into the full feature of size 85, while 
the rest uses features from the corresponding signal. We examine the same combinations for all models to stay consistent 
with the original model [3]. 

2.1   Neural Network with 1 hidden layer 

Similar to Zhu et al.’s neural network model above, we construct our baseline NN model with 1 Sigmoid hidden layer of 
50 neurons [3]. We train 100 epochs in total as training more epochs would likely result in overfitting which will be 
discussed later. 

2.2   Neural Network with 2 hidden layers 

As a supplementary to the NN with 1 hidden layer above, we also train a NN with one additional hidden layer. Adding 
one more hidden layer may be beneficial because the newly added hidden layer may capture additional information or 
information of different scopes from the features. It may specialize in transforming and combining features differently 
from the first hidden layer. While the original hidden layer has size of 50, the new hidden layer has 25. Giving the second 
hidden layer a smaller layer size compared to the first one ensures that the activations from the first hidden layer gets 
condensed and combined in the second hidden layer. The size of 25 also allows for a smooth feature transformation 
between the first hidden layer and the output layer, in that it forwards adequate amount of information between the two 
layers. The new hidden layer will also have Sigmoid as its activation function to enable non-linearity. 

2.3   Distinctiveness Pruning 

While the first variation explores increased complexity, the second goes in the opposite direction. This is for the 
consideration that an overly complex model may not always give better performances. As a Neural Network model grows 
bigger it occupies more memory and increases computational cost while the accuracy stops improving or even begins to 
decrease. Therefore, pruning redundant or less important hidden neurons from neural networks trained by back-
propagation can be useful to improve the generalization performance. Pruning methods such as Brute Force or prune by 
inspection is used to reduce the hidden units. For this paper, we adopt the distinctiveness pruning method introduced by 
Gedeon, which is conceptually one of the simplest pruning methods [4]. Pruning to the neural network is done by the 
following steps: All training data is presented to the network one by one, and the activations (outputs of the Sigmoid 
function) of all hidden neurons are collected into a matrix such that each neuron would have a corresponding vector (of 
length the size of the training set) in the matrix. For each pair of the vectors in the matrix we calculate the angles between 
them which are limited to the range of 0° to 180° (An angle of 0° means that the two vectors are pointing towards the 
exact same direction, while the angle of 180° means the exact opposite). We prune neurons that are similar or 



 

complementary to others. Specifically, a pair of neurons are considered similar when the angle between their vectors in 
the matrix is less than 15°, and complementary when more than 165°. For each similar neuron pairs, one of the two 
neurons is removed (by fixing its weights to 0), and optionally, the associated vector of the removed neuron can be added 
to that of the preserved neuron. This could be beneficial because if the two neurons are learning similar weights, their 
behaviors would be similar. Also, merging the weights could ensure the merged neuron gives output of similar 
magnitudes. As for complementary neurons, both are removed from the network. This could be beneficial as the two 
vectors are likely cancelling each other out [4]. The aim of this pruning is to remove undesired and redundant neurons, 
potentially reducing confusions and increasing performance of our model.  

2.4.1   Parameter Optimization via Genetic Algorithm  

So far, we have been tuning model hyper parameters manually. With this variant we try to optimize the parameters 
automatically using GA. GA selects solutions to a problem by mimicking the natural evolution process. Potential solutions 
within the population go through natural selection, reproduction, and mutation [5]. In our case, the solution is an array 
consisting of 6 hyper parameters for the 1-hidden layer pruned neural network. The parameters include number of epochs 
to train, number of epochs between pruning, batch size, learning rate, and the two pruning angle thresholds. We start with 
initialization where a set of solutions (the population) is generated. Each parameter of the solutions is chosen at random 
from a set of predefined values. For example, batch size would be one of 8, 16, 32, 64, 128. The evolution process then 
begins. In each generation, we compute fitness of each solution. The fitness is the performance of the models trained 
using the parameters encoded in the solution. With the fitness as probabilities, we select solutions in population such that 
solutions deemed fitter are more likely to be preserved while solutions deemed less effective are slowly eliminated. We 
implement Elitism in this stage by always preserving the best few solutions between generations. We then randomly pick 
pairs of solutions and perform crossover. This means random parts of the two solutions are chosen to form new solutions. 
Finally, we randomly mutate parts of some solutions by altering the encoded parameter. The above evolution would 
continue until either the max number of generations is reached, or if the solutions in the population has converged, 
meaning they look and perform similarly. It is expected from GA that it could combine good parts of different solutions 
into a fittest solution. 

2.4.2   Parameter Optimization via Bayesian Optimization 

Bayesian Optimization (BO) is an alternative to GA and is also used here to optimize hyper parameters. Parameter 
optimization problem is difficult to model so BO is especially helpful, as it approximates the objective function. It does 
so by sampling in the input space, first randomly but then with heuristics, to obtain observations at different locations of 
the objective function. With the estimated objective function, it then discovers a solution, a best guess, to the problem [6]. 
One aspect where BO may be better than traditional GA is that instead of choosing parameters from a set of predetermined 
values, BO guesses solutions on demand. In brief, GA is more discrete while BO is more continuous. We would provide 
BO the ranges of parameter values to sample, and let the observations be performances of the models trained with the 
guessed parameters. BO would produce a set of parameters that is most likely to maximize the performance. We use BO 
because GA is too computationally expensive, and BO may yield similar or better results while performing less 
computations. 

2.5   Evaluation 

We use the leave-one-participant-out cross-validation method described in Zhu et al.’s paper. This validation method 
leaves out all features belonging to one participant as validation set and group the rest to form the training set. To ensure 
fairness and integrity of the evaluation, each variation is trained 12 times (because there are 12 participants), each with a 
different participant left out for validation. This method resembles 12-fold validation, so test performance of the model 
is the average of the 12 models. In order to correctly perceive the performances of the models above, Zhu et al.’s used 
precision, recall and F1-score as evaluation measurements. F1-score takes the harmonic mean of precision and recall. 
And as there are four classes of depression output, we calculate the average precision, recall and F1-score for all output 
levels and give a view on general prediction performance. Also, the overall accuracy, the number of individuals correctly 
predicted with their corresponding depression levels over the total number of individuals, is calculated to evaluate the 
overall performance [3]. And according to these measurements, ideally a value closer to 1 indicates more accurate 
predictions. 



3  Result 

In this experiment, we are interested in the accuracy of depression level prediction based on observers’ GSR, ST and PD 
features. The assessment of performance for each single signal is also important, so we do the comparison using NN (1 
and 2 hidden layers), distinctiveness pruning, GA or BO on pruned model under four conditions: 1) GSR+ST+PD: using 
combined features extracted from all three signals; 2) GSR; 3) ST; and 4) PD, with the last three only using extracted 
features from the respective signal. When each single signal is trained, only the input feature size and model input layer 
is changed while everything else remains the same.  

3.1   Neural Network with 1 and 2 hidden layers 

Figure 1 shows the evaluation measurements of precision, recall and F1-score for the four depression levels under the 
four conditions (the three signals respectively and the three combined). It also compares the result of the baseline NN 
model which has only 1 hidden layer, and the viarient with 2 hidden layers. We can see that by combining all these 85 
features as inputs, the baseline model, NN with 1 hidden layer, has an overall accuracy of 0.292 which means 29.2% of 
individuals have their corresponding depression levels correctly predicted. The 2 hidden layer NN model also gives the 
overall accuracy of 0.292. We conclude that compared to the baseline model, adding one more hidden layer has no 
improvement on the overall performance and is not a meaningful improvement.   
 
Also, for the other three conditions with single signals as input only, we can see that NN with 2 hidden layers has a 
significant increase in the overall prediction accuracy with ST signal alone. But for GSR and PD, overall accuracy are 
even worse than NN with 1 hidden layer. Therefore, we conclude again that adding another hidden layer is not very 
effective. 
 
As shown in the Figure, these evaluation measurements (average precision, recall and F1-score and overall accuracy) are 
all below 0.5 (far from the ideally value of 1), meaning that the combination of the training data and our NN model may 
not be perfectly adequate for this depression classification dataset. As the improvements of the 2 hidden layer model is 
minimal, future models should try other means to improve the evaluation results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Evaluation measures for depression levels on all features for NN with 1 and 2 hidden layers. 

3.2   Distinctiveness pruning 

As mentioned above, NN with 2 hidden layers does not increase the overall performance much. Therefore, we only applied 
distinctiveness pruning on NN with 1 hidden layer. After the 100 epochs of training, we prune the redundant and useless 
neurons and train another 30 epochs to evaluate the performance. If we train more than 30 epochs, performance starts to 
decline which may be due to the overfitting problem and more detail will be covered in the discussion section. 
 
Figure 2 shows the average number of neurons pruned in the NN along with the overall evaluations on all features. As 
shown below, the ratio differences of average pruned neurons for the four conditions are relatively large. For the combined 
signals condition, we pruned 34.5% of the total of 50 hidden units. And for other three conditions with single signals 
alone as inputs, the average neurons pruned are even larger, being 50%, 74% and 51% respectively. This indicates that 
the hidden layer size of 50 is more than enough to extract information useful for classifications from the combined features 
which have size 85 (GSR+PD+ST). This is even truer for single signals with smaller sizes 23 (GSR), 39 (PD), 23 (ST). 
 



 

Compared to Figure 1 above, we see that pruning does increase the generalization performance a little. For the combined 
case, distinctiveness increases the overall accuracy from baseline of 0.292 to 0.323. This model with pruning also does 
better than the NN variant with 2 hidden layers. The same is also true for single signals conditions, where distinctiveness 
pruning increases the evaluation measures marginally (2.6% increase in GSR, 1.6% in PD, and 2.1% in ST).   

 
 
 
 
 
 
 
 
 
 

Fig. 2.  Evaluation measures for depression levels on all features for distinctiveness pruning 

3.3.1   GA on pruned network 

Additionally, we use GA to select hyper parameters on pruned network to improve the accuracy of the pruned model 
above and the evaluation results are given in Figure 3. Compared to the distinctiveness pruning model, for the combined 
signals condition, the overall accuracy has increased from 0.323 to 0.38 (as shown below in blue). This 5.7% of increase 
gives the support that GA has had an improvement on pruned model. Likewise, notable amount of improvements are also 
observed for single signals GSR, PD, and ST. This is very true for ST which sees an 8.9% improvement over baseline. 
 
In all of our tests, the combined features (GSR+PD+ST) always yield the highest performance in our evaluations because 
in this case having more information translates into better accuracy. 

 
 
 
 
 
 
 
 
 

Fig. 3.  Evaluation measures for depression levels on all features for GA on pruned network 
 

As shown in Figure 4, we compare the overall accuracy on all features for NN (shown in yellow), Distinctiveness pruning 
(green) and GA on pruned network (red). Clearly from the figure, compared with the baseline model shown in yellow, 
both distinctiveness pruning and GA on pruned model have improved the overall performance. Also, using GA to select 
hyper parameters for pruned network further increases the performance. Nevertheless, GA is very computationally 
expensive. Even though we observe that the population generally converges around generation 7, a generation of 7 still 
requires the evaluation of at least 3360 models (12 participants × 40 population size × 7 generations). 

 
 

 

 

 

 

 

 

Fig. 4.  Overall accuracy on all features for NN, Distinctiveness Pruning, and GA on pruned network 



3.3.2   BO on pruned network 

As a substitution method for selecting hyper parameters, BO does similar things as GA. And considering about its 
performance, we can see from Figure 5, the overall accuracy for the combined features reaches 0.391, slightly higher than 
GA (0.38). Even though GA and BO yield similar overall accuracies, BO largely reduces computational time. 

 

 

 
 

 
Fig. 5.  Overall accuracy on GSR+PD+ST for GA and BO on pruned network 

3.4   Discussion 

As shown in Figure 6 below, we compare performances of all models. We see that NN 2 hidden layer does not improve 
baseline much. Furthermore, distinctiveness Pruning not only simplified the model but also improved the performance. 
In addition to the pruned model, GA and BO both select optimal hyper parameters to further push performances to the 
limits.  

 

Fig. 6.  Overall accuracy for all models with all signals combined 
 
Moreover, in NN with 1 hidden layer, due to the small dataset size of 192 combined with the use of all 85 input features, 
this model encountered the overfitting problem. As shown in the Figure 7 below, the training accuracy is much higher 
than testing accuracy in NN baseline model, which means that overfitting occurs during the training process. NN baseline 
model with all three signals combined reaches an average training accuracy of 55.7% while the average testing accuracy 
stays around 29.2%. This 26.5% difference shows that our model performs decently on the training dataset, but when the 
model starts to predict on the test data, the accuracy remains low. It is likely the model becomes specialized in predicting 
the training set, and is confused on test set, the unseen data. We implement improvements such as distinctiveness pruning, 
and GA or BO on pruned model. As we can see that GA and BO reduce the difference between training and testing 
performance to 8.6% and 10.2% respectively. Indeed, the differences become smaller for GA and BO. The overfitting 
problem is mitigated.  

 
 
 
 
 
 

Fig. 7. Average training and testing accuracies of NN with 1 hidden layer, distinctiveness pruning, GA and BO on pruned network 

4  Conclusion 

In this paper, we investigate the performance of NN with 1 and 2 hidden layers, the distinctiveness pruning, and hyper 
parameter optimization via GA or BO. In terms of the NN model, adding one more hidden layer does not increase the 



 

overall accuracy much. Next, by applying distinctiveness pruning method to this NN baseline model, in average 17.25 
hidden neurons are pruned, making the model simpler and more efficient. The overall accuracy increases by 3.1% over 
baseline. Furthermore, after optimizing hyper parameters, GA or BO improve performances by 8.1% and 9.9% 
respectively. 
 
From the results above, we conclude that distinctiveness pruning improves the model to some extent (at this stage all 
parameters are manually chosen). With GA or BO, the performance can be improved further because they test many more 
combinations of parameters and is able to find the optimal sets. While GA produces reliable results, it depends heavily 
on good population initializations because final parameters must be chosen from the original population. Also, GA 
requires plenty of time and resources for simulations because better results usually undergo many crossovers and 
selections. On the other hand, BO is more flexible because it chooses parameters from a range instead of predefined 
values so the parameters can be more precise. For example, while GA can only choose batch size from one of 8, 16, 32, 
64, and 128, BO can produce a value such as 54.5. Besides, BO is not as computationally expensive as GA, and usually 
reaches solutions as good as that of GA in much less simulations. 

4.1   Future Works 

To further improve performance, the overfitting problem which still exists after all attempts needs to be remediated. Two 
possible solutions are to gather more experiment data to train the model or using dropout method to better balance and 
tune the weights in the model. Early stopping may also be applied in this work to improve the overfitting problem. 
 
Also, we use all features of the four conditions in the NN models with pruning, including each of these three psychological 
signals separately and all three combined. It is likely that some of those extracted features from the signals may be 
redundant. These redundancies may bring unnecessary complexity to the model and have an adverse impact on the 
performance. Therefore, implementing feature selection process may simplify the model input and reduce confusion, 
thereby improving performance. GA with Linear Discriminant Analysis (LDA) fitness would be a good candidate method 
for this task. 

References 

1. World Health Organization. (2021). Depression. Retrieved from  
https://www.who.int/health-topics/depression#tab=tab_1 
2. S. Potvin, G. Charbonneau, R.-P. Juster, S. Purdon, and S. V. Tourjman. (2016). Self-evaluation and objective 
assessment of cognition in major depression and attention deficit disorder: Implications for clinical practice. Compr. 
Psychiatry, vol. 70, pp. 53–64. 
3. Zhu, X., Gedeon, T., Caldwell, S., & Jones, R. (2019). Detecting emotional reactions to videos of depression. In 
INES'19: IEEE 23rd International Conference on Intelligent Engineering Systems, vol. 1, pp. 6. 
4. Gedeon, T. (1995). Indicators of hidden neuron functionality: the weight matrix versus neuron behaviour. Proceedings 
1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, vol. 
1, pp. 26. 
5. A.E. Eiben, J.E. Smith. (2015). Introduction to Evolutionary Computation. (2nd ed.). Springer. 
6. Jason Brownlee. (2019). How to Implement Bayesian Optimization from Scratch in Python. Retrieved from 
https://machinelearningmastery.com/what-is-bayesian-optimization/ 
 


