
Facing Truth: Sequential Feature Selection using
Constructive Autoencoders for Deception Classification

Ed Muthiah

Research School of Computer Science

Australian National University, ACT 2601
u5589751@anu.edu.au

Abstract. Feature selection is paramount in in machine learning. This paper
introduces a novel ‘wrapper-embeded‘ feature selection technique using
cascade constructed autoencoder for sequential feature selection
(AutoConSFS). The technique is applied to thermal facial analysis data to
detect deception. The introduced technique is also compared with sequential
feature selection using fully connected neural networks (FCNSFS). While both
networks perform better using all available features, AutoConSFS (72.7%)
performs 9.1% better than FCNSFS. However, the AutoConSFS feature
selection was 10.1% below par compared to the original deception detection
features selected manually using t-test, relative entropy, and Wilcoxon tests.

Keywords: Constructive Cascade, Autoencoders, Feature Selection,
Bioinformatics, Deception, Facial Thermal Imaging, Neural Network

1 Introduction

1.1 Background

Feature Selection (FS) has been a long-term focus of the machine learning
community. In the field of bioinformatics, well-implementation feature selection has
shown to reduce dataset redundancy and model overfitting, whilst increasing
interpretability and model performance by time and accuracy on regression and
classification tasks [1]. Common FS techniques can be split into three categories -
filter, wrapper and embedded methods. A comparison between the three is presented
in both Figure 1 and Table 1 below.

Classifier

Embedded

Filter Classifier

Filter

Feature
Selection Classifier

Wrapper

Fig. 1. Filter (left), Embedded (middle) and Wrapper (right)

Table 1. Comparison of Filter, Wrapper and Embedded feature selection.

 Filter Method Wrapper Method Embedded Method
Description Classifier Independent

Feature Statistics
Predictive Models Incorporated in

Classifier Design
Speed Computationally Faster Slower Medium

Overfitting Avoids Overfitting Prone to Overfitting Less Prone to
Overfitting

Performance May fail to select best
features

Better Performance,
Captures feature

dependences

Good Performance,
Classifier Dependent

Selection
Examples Correlation, Chi-

Square, Info Gain
Forward Selection,

Sequential Selection,
Autoencoders, NNs,

Ridge Reg

1.2 Motivation

The motivation of this paper stems from combining the benefits of both wrapper
methods and embedded methods in feature selection. Wrapper methods have good
accuracy and explainability but limited speed and generalization. In contrast,
embedded methods are high accuracy and generalizable but are black box.

Three past efforts form the reasoning behind the algorithm contributed by this paper:

(1) The application of neural networks (NNs) to wrapper-based methods for FS
was successfully implemented by Onnia et al. [2], who implement a variation of the
sequential feature selection (SFS) by adding one neuron (feature) to a multilayer
perceptron (MLP) input layer at a time with one fixed size hidden layer. Upon testing
on various simulated and real world problems, Onnia et al. showed that the neural
network based wrapper methods reduced the size of the feature space significantly
and improved classification accuracy compared to using all features.

(2) The concept of NNs for wrapper-based FS in (1) was extended in Ramjee et
Al’s efficient feature selection algorithm using autoencoders (AE). AEs are a
common neural network architecture found in many deep learning techniques. Their
structure as show in Figure 2 below aim to achieve dimensionality reduction of the
input to a lower dimensional space before, targeting to reconstruct the input from this
reduce feature space and can be considered an embedded filtering technique.

Fig. 2. Typical Autoencoder Structure. Source: Wikimedia Commons

Given the high compute of wrapper based techniques Ramjee et. Al implement an
autoencoders to perform greedy backward elimination of features, removing features
that are not critical to a classification task. In their AMBER strategy they train a
single hidden layer autoencoder using sequential feature selection where they set the
dth feature of the training set to 0 in a round-robin fashion and retrieve both the MSE
and classification accuracy to rank and remove k features.

Upon comparison to other feature selectors such Fisher, Conditional Mutual
Information Maximisation (CMIM), R-value, Feature Quality Index (FQI) the
AMBER strategy is shown to return higher accuracies at lower computational cost on
popular datasets such as MNIST and RadioML. Regardless, the autoencoder
parameters such as hidden layer depth and width are chosen empirically rather than
through self-construction.

 (3) The Cascade Correlation (CasCor) algorithm developed by Fahlman et al. is
considered to be a pre-cursor to deep neural networks (DNNS) and boosting [4]. The
architecture self-constructs itself by beginning with a minimal NN with a single input
layer is connected directly to the output layer and cascade one hidden neuron at a
time. Alongside being connected to the outputs of previous hidden neurons, each
hidden neuron also maintains its connection with the input layer. The selection hidden
neurons achieved using a candidate pool which aims to maximize the correlation
between the neuron’s output and the remaining network error. These layers are then
frozen resulting in a network with permanent feature sets that are computation more
efficient than backpropagation and inherently lean. A visualization of the cascade
correlation architecture is presented in Figure 2.

Fig. 3. Fahlman et al.’s Cascade Correlation learning architecture [4]

1.3 Contribution

This paper extends the efforts of neural-network based SFS methods in (1) and (2)
and combine it with the principles of (3) to contribute a:

• A constructive cascade autoencoder network for sequential feature selection
(AutoConSFS) algorithm (implemented 2 hidden layers).

• SFS using a fully connected neural network with 1 fixed hidden layers
(FCNSFS).

• A variety of comparisons to using full feature sets, selected feature sets and
compared to statistical methods such as t-test, relative entropy, receiver
operating characteristic, and Wilcoxon test.

1.3 Dataset

To validate the AutoConSFS and FCNSFS algorithms, data from the paper “Network
physiology of ‘fight or flight’ response in facial superficial blood vessels” by
Derakshan et al. is used [6]. Derakshan et al.’s paper presents a novel framework to
identify the dynamic pattern of blood flow changes in the cutaneous superficial blood
vessels of the face for ‘fight or flight’ responses through facial thermal imaging.

The data is from a mock crime scenario, in which 31 participants were divided into
two groups: deceptive and truthful. All participants were brought to an interrogation
room and asked the question: “Did you steal the gold necklace?” During which,
psycho-physiological effects on their faces were captured using a thermal camera.
Within each thermal image, five regions of interest of the face were defined as the
periorbital, forehead, cheek, perinasal and chin as shown in Figure 2.

Fig. 4. Five facial ROIs defined as the periorbital PO (1), forehead FH (2),

Cheek CK (3), perinasal PN (4) and chin CN (5) [6]

The blood flow between facial regions was assumed to be a time series. Thus,
Derakshan et al. used an extension of the standard Granger Causality (eGC), which
shows the causal relationship between two time series, to determine the relationship
between paired facial regions.

Table 2. Paired eGC facial region index. Manually selected features in bold [5]

 periorbital forehead cheek perinasal chin

periorbital 1 2 3 4
forehead 5 6 7 8

cheek 9 10 11 12
perinasal 13 14 15 16

chin 17 19 19 20

Upon feature selection using t-test, relative entropy, receiver operating

characteristic, and Wilcoxon test. The bolded ROI pairs (shown in Table 2) were
manually selected by Derakshan et al. for returning the best classifier performance.
Specifically, the values correlate to PO-FH, CN-PN, FH-PO and CN-FH. These
selected features provide a benchmark for CasCorSFS and FCNSFS implemented in
this paper. The eGC value dataset contained deception results from 31 suspect each
with 20 facial pair features (as shown in Table 2). The dataset contain 15 liars
(encoded as True) and 16 non-liars (encoded as False).

2 Method

2.1 Sequential Feature Selection Algorithm

Classification

Pass features to
Dataloader
sequentially

Train NN with this
single feature

(FCN) or without
(AutoCon)

All features
passed?

Re-train selected N
input network

Calculate top (n)
feature index

No

Yes

Store Feature
Test Accuracy

Fig. 5. Sequential Feature Selection (SFS) Algorithm Implementation

Figure 3 above captures the implementation of the SFS algorithm. This technique is
applicable to both the AutoConSFS and FCNSFS architecture outline in section 2.3.
Note that for FCN only one feature was used at one time for training the network,
while for AutoCon one feature was removed, leaving only 19 features.

2.2 Dataset Preparation

• The GC indexes were normalized to [0 1] for each person using the Min-Max
normalization technique.

• From the 31 total examples, the dataset was split to provide 20 or training 10
examples of liar/non-liar and 11 images for testing with 5 liars and 6 non-lars

• A consistent batch size of 5 examples sampled from a shuffled dataset was
used throughout AutoConSFS and FCNSFS training.

2.3 Network Architecture and Training

2.3.1 Fully Connected (FCN) SFS and Network

Fig. 6. Fully Connected Neural Network (FCN) with 4-unit hidden layer.

Left image shows FCN during single FS and right image shows after top 4 are

selected. The FCNSFS was trained using FCN with a 1-4-1 architecture. The hidden
layer used a ReLU activation with a dropout of 0.2. The output layer used a Sigmoid
activation. The optimizer was Adam, with a 1e-3 learning rate and L2 regularisation
of 1e-5 for generalization.. Training was run for 500 epochs. This network
architecture was chosen because of the low number of training and testing samples.
Given the sequential selection process of testing one feature at a time only one input
node is required, it was found that there was little gain using more than one hidden
layer with a single input and was likely to result in local minima.

2.3.2 Constructive Autoencoder (AutoCon) SFS and Network

The AutoCon SFS aims to combine the benefits of both wrapping and embedded
filtering techniques whilst also self-construcing a multi-layer AE. To achieve this
AutoCon methodology has four distinct steps:

(1) Base AE definition (20-k-20) - Use all features (20) through a base single
hidden layer autoencoder with (k) hidden units and use the MSE to determine
the optimal number (koptimal) of hidden neurons in the base AE.

The AE is trained for 10 epochs, with an input size of 20 and k hidden size
that iterates from 1 to 19. We cap at 19 to ensure that hidden layer size is
smaller than the input layer to achieve information loss. Given, that we only
have 20 training samples, a relatively low number of training epoch was used
for early stopping. The encoder and decoder both use ReLu as the activation
function. SGD optimizer was use with learning rate 0.3 and momentum 0.9
alongside with a MSE loss.

(2) Base AE Sequential Features Selection (19 - koptimal - 19) – In a similar

approach to Ramjee et. Al in [5] we train the AE with one removed feature
column (leaving 19 features) in a round robin fashion. The MSE is then used
to rank the top 10 input features. The value of 10 here was chosen empirically
as 50% of the input features. This is because too many features would not
allow for dimensionality reduction while too few features would leave only a
few (if not single) neuron widths in further hidden layers. The Base AE SFS is
trained for 10 epochs, with an input size of 19 and koptimal hidden size. The
encoder and decoder both use ReLu as the activation function. SGD optimizer
was use with learning rate 0.3 and momentum 0.9 alongside with a MSE loss.

(3) SFS AE Classification (10 - koptimal – 10) – Upon establishing this
initial SFS AE with a single hidden layer from Step 1and Step 2, we train the
AE with 10 epochs, input size 10, hidden size koptimal. The encoder and
decoder both use ReLu as the activation function. SGD optimizer was use with
learning rate 0.3 and momentum 0.9 alongside with a MSE loss. Once training
of the AE feature selector is complete we freeze the AE weights up to the
bottleneck layer, remove the decoder and append a classifier layer with input
size koptimal and output size 2. The output size correspond to the categories 0

and 1 for not-deception and deceptive. The classifier layer uses a LogSoftmax
loss. The classifier layer is then trained with 40 epochs, negative log
likelihood loss, and adam optimizer with learning rate 0.3.
.

(4) AutoConSFS Classification (10 koptimal – kbottleneck - koptimal – 10) – To
understand the the 4th Step of AutoCon we consider the similarities between
Cascade Correlation and AutoCon as shown in Table 3.

Table 3. Similarities between Cascasde Correlation [6] and AutoCon

Cascade Correlation AutoCon
Begin with a minimal NN Begin with 1 hidden layer AE from Step 3.

Cascade train one hidden neuron
at a time.

Cascade train one encode-decode at a time.

Freeze previously trained
neurons.

Freeze previously train encode-decode layers.

Candidate pool for hidden neuron
width based on correlation.

Candidate pool for bottleneck width based on
classification accuracy.

Thus the to build AutoCon we first repeat the first half Step 3, however once
the training is complete of the base SFS AE we freeze the both the encoder
and decoder layer weights. We then add a stack an encode-decode layer in-
between these for training. The number of units (kbottleneck) in the new
bottleneck second layer is self-determined using a candidate pool comparison
with classification accuracy. The values of kbottleneck range from [1, koptimal] to
ensure dimensionality reduction. We train the second encode-decode pair 10
epochs, ReLu activation, SGD with lr 0.3 and momentum 0.9 and MSE loss.

Finally to perform classification in a similar manner to the previous step we
freeze all weights up to the bottle neck and train the classifier with the same
parameters as in Step 3. It is hypothesized that the layer-wise pre-training will
allow for more permanent feature sets that are computationally more efficient.
A visualization of the AutoCon architecture Step 4 is shown in Figure 7.

Fig. 7. AutoCon Step 4 reduction and classification phases with frozen weights in orange and

learnable weights in green.

2.4 Hyper Parameters Optimisation

Numerous hyperparameter experiments were conducted for both the FCN and
AutoCon networks including:

• Different activations: tanh, sigmoid, relu
• Learning rates: 3e-1, 3e-2, 3e-3, 3e-4, 3e-5
• Regularisation strengths: 1e-3, 1e-4, 1e-5
• Number of epocs:1,10,40, 50, 100, 250, 500, 1000
• Dropout: 0.1, 0.2, 0.25, 0.5
• Number of nodes in FCN hidden layer: 1,2,4,8,16
• Number of input features to AutoCon: 20,15,10,5,3

3 Results and Discussion

The results obtained from implementation can be summarized into 2 categories,
FCNSFS results and AutoConSFS results. Relevant comparisons to the original paper
are made in line in each section.

3.1 Fully Connected Network Sequential Feature Selection Results
Figure 6 below shows the results of training the FCN with all 20 feature inputs.
Compared to the training results of the top for 4 selected values.

Fig. 8. Fully Connected Neural Network training results using all 20 features (left) and top 4

selected features (right)
The test accuracy for pre and post feature selection was 54.5% and 63.6%
respectively. Subsequently the FCNSFS network performs nearly 10% better using
the NN based feature selection. The pre feature selection accuracy is almost identical
to Derekshan et al who posted ~54%, however the Derekshan FS techniques return a
significantly better accuracy at 83.3%. The top four facial ROI pair returned by the
FCNSFS network were 1. Cheek-Periorbital, 2. Perinasal-Chin, 3. Periorbital-
Forehead, 4. Cheek-Perinasal. Of these, only Periorbital-Forehead Matched with the
statistical feature selection conducted by Derakshan et al.

From the training graphs in Fig 6 we see that although the feature selected network
(right) has a more fluctuating loss curve, it does not overfit the dataset like the full
feature network, which quickly saturates to 100% accuracy.

Constructive Autoencoder Sequential Feature Selection Results

Fig. 9. AutoCon Results: (a) Simple AE hidden neuron selection, (b) Input SFS,

(c) SFS AE classification, (d) AutoConSFS classification,
(e) All Features AE classification, (f) All Features AutoCon classification

Figure 9 above shows extensive results from the implementation of the methodology:

(a) Initially, when determining the optimal base AE hidden neurons based on a
MSE, (a) shows that the optimal is around 5 neurons. Althought the MSE continues to
decrease with more neurons as expected, the information loss is lower and lower as
the bottleneck layer increases until the mapping is essentially an identity. Thus as a
trade between accuracy and dimentionality reduction 5 neurons is selected as koptimal
leading to a 20-5-20 AE.

(b) In sequential feature selection phase one feature was removed in a round robin
fashion and (b) shows the impact on the MSE. It is assumed here that features with
lower MSE when remove have redundancies as thus the top 10 features are selected.
During the SFS the results selected features 1 (PO-FH), 5 (FH-PO), and 8 (CN-FH)
which correspond directly to also ¾ features selected by Derakshan et al.

 (c, d) From (c) and (d) we see that with a single hidden layer AE, using SFS we
achieve a train/test accuracies 0.70/0.63, while using an additional hidden layer and
the AutoCon technique we achieve improved train/test accuracies of 0.75/0.72. This
improved accuracy is likely a result of the deep autocon structure which allows for
more non-linear representations in the data to be captured that a single hidden layer.
Early stopping at 40 epoch was a key decision here as for greater values the small
dataset began to overfit to the training data. When comparing with the original
Derekshan et al paper we see that commendable AutoConSFS 72% test accuracy falls
short of the 83.3% reported by Derekshan et al.

 (e, f) In (e) and (f) we see a significant different that the SFS technique has when
compared to simply using all available features. With a single hidden layer AE, using
SFS we achieve a train/test accuracies 0.60/0.45, while using an additional hidden
layer and the AutoCon technique we achieve improved train/test accuracies of
0.5/0.55. Thus, it is evident that autocon straight fails to learn when all features are
used. Although initially, this may look to be a flaw of the model when compared to
the Derekshan paper, the reported full feature accuracy was also only ~54%.

As a final comparision, we find that AutoConSFS significantly improves on the
FCNSFS train and test accuracies by 9.1%. Of the selected features, only Periorbital-
Forehead was common across FCNSFS, AutoCONSFS and Derekshan. However, the
test accuracy of AutoConSFS suggests other descriptive features were also identified.

4 Conclusion and Future Work

The main goal of this study was to implement a novel wrapper-based feature selection
algorithm using fully connected and constructive autoencoder neural networks. In the
application of these techniques to deception detection, the use of top n feature
selection significant and consistently improved the performance when compared to
using all available features. Although this result is promising, the choice of a two
stack autoencoder was only a proof of concept and thus future implementations
should experiment with greater network depths and widths. An immediate future task
could be to assess feature selection with a joint metric that combines that optimizes
dimensionality reduction and classification error.

References

1. Saeys, Yvan, Inaki Inza, and Pedro Larranaga. "A review of feature selection techniques in
bioinformatics." bioinformatics 23.19 (2007): 2507-2517.

2. Onnia, Vesa, Marius Tico, and Jukka Saarinen. "Feature selection method using neural
network." 2001 ICIP (Cat. No. 01CH37205). Vol. 1. IEEE, 2001.

3. Fahlman, and Scott E. The cascade-correlation learning architecture. CMU E, 1990.
4. Kabir, Md Monirul, Md Monirul Islam, and Kazuyuki Murase. "A new wrapper feature

selection approach using neural network." Neurocomputing 73.16-18 (2010): 3273-3283.
5. Ramjee, Sharan, and Aly El Gamal. "Efficient wrapper feature selection using autoencoder

and model based elimination." arXiv preprint arXiv:1905.11592 (2019).
6. Derakhshan, Amin, et al. "Network physiology of ‘fight or flight’ response in facial

superficial blood vessels." Physiological measurement 40.1 (2019): 014002.

