
Grade Prediction

Using Different Methods

Srikanth Polisetty

Research School of Computer Science

Australian National University

Canberra, Australia

u7142680@anu.edu.au

Abstract: In this paper accuracy and loss of different models were compared for grade prediction

based on given dataset. Feedforward Neural Network (FFNN), CasPer NN and Feedforward Neural

Network with/without Greedy Layer-wise Pretraining (GLP) were used to do the comparison. FFNN

is a plan vanilla neural network model with predefined intermediate layers of neurons. CasPer uses

Cascade architecture and a variant of RPROP (a backpropagation algorithm) to train the network.

FFNN with GLP attacks the problem of training the deep networks in layers. It keeps the weights

of the existing hidden layers constant, while adding new hidden layers. FFNN GLP model works

on the assumption that it is easy to train a shallow network rather than a deep network. Since the

chosen dataset size is small, the FFNN with fixed layers had given best test accuracy.

Keywords: CasCor Neural Network, CasPer Neural Network, Grade prediction, Feedforward model, Greedy

Layer-wise Pretraining model

1 Introduction

In this paper, grade prediction based on given set of input features using different models like

- Feedforward Neural Network without adding layers

- CasPer Neural Network and

- Feedforward NN with Greedy Layer-wise Pretraining

- Feedforward NN without Greedy Layer-wise Pretraining

is discussed. Comparison is done for the Loss and Accuracy of results to complete the prediction.

Prediction is a classical machine learning problem which is being used for many purposes. In the days

of uncertainty due to pandemic, in some countries the midterm results and assignment results are being

used to compute the final exam marks. Also, the prediction can be used to verify the relation between

various midterm exams/assignments and the final exam results. This relation helps the faculty to assess

the possibility of integrity compromise.

The dataset was chosen from student’s marks from University of New South Wales [1]. After doing the

necessary preprocessing, this dataset is used for training the above-mentioned models.

Applied the Feedforward model with ADAM optimizer on the preprocessed dataset and calculated the

prediction accuracy. In the same way using the CasPer Neural Network and Feedforward NN with and

without Greedy Layer-wise Pretraining, the prediction accuracy and the loss were calculated.

mailto:u7142680@anu.edu.au

2 Methodology

2.1 Data Preparation

1. Header change

Given data set [1] contains column names in 2 different rows also contains column header separator

lines and irrelevant data like date, time, page no etc. This data is cleaned up manually and column

headers are added to represent the data properly.

2. Data preprocessing

In the chosen dataset, there are many values not filled in (NULL) for some features.

For each student, if we can calculate the percentile position in the class, it can be used to

approximately determine the missing data points. For this purpose, for a given student for each of

the features where data is present, the percentile value is calculated. Average of all percentile values

gives the percentile position of that student in the class. This value is used to estimate the missing

data for that student (if any). Note: The rows in which all the entries are NULL are dropped as no

data of that student is available to infer other values.

In the original dataset, there are 153 rows and 16 features in the dataset. After dropping the rows

where all the entries are null, the dataset has 146 rows and 12 features.

The columns which have more than 10 categories are dropped as the dataset has only 153 rows and

the average number of entries corresponding to each class will not be more than 15.3, which is

extremely small.

To eliminate the chance of handling different ranges of data, the data in numerical columns is

normalized by using the maximum possible score of that column.

The categorical columns left are “ES” and “S”. These columns are encoded using the Leave One

Out Target Encoding (LOOTE). LOOTE is like target encoding, but unlike target encoding when

calculating the encoded value of an entry, that entry’s value is not used. LOOTE is useful especially

when dealing with smaller datasets. The formula of LOOTE is as follows:

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑐𝑜𝑢𝑛𝑡= Number of occurrences of a specific categorical value

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑚𝑒𝑎𝑛 =
Sum of target values for a specific categorical value

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑐𝑜𝑢𝑛𝑡

mean =
sum of all target values

Count of all target values

m is a hyper value whose value is initialized to 100

𝐶𝑒𝑙𝑙_𝑣𝑎𝑙𝑢𝑒 =
(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑐𝑜𝑢𝑛𝑡∗𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑚𝑒𝑎𝑛) + (𝑚∗𝑚𝑒𝑎𝑛)

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑐𝑜𝑢𝑛𝑡+𝑚−1

To eliminate the chance of handling different ranges of data, the encoded data is normalized by

using the maximum value of that column.

Figure 1. Value counts of grades

3. Outcome column addition

Below criteria is used for assigning the grades corresponding to total marks obtained:

• 75-100%: Distinction (D): Value 1

• 65-74%: Credit (CR): Value 2

• 50-64%: Passed (PS): Value 3

• <50%: Fail (FL): Value 4

A new column is added to the data set to contain these target values.

2.2 Feedforward Neural Network model

Feedforward Neural Network model [4] is trained with 64% of dataset, validated with 16% of dataset and

tested with 20% of dataset. Since input layer has 12 features, 12 neurons and 24 neurons were configured

in two hidden layers. There are 4 output neurons corresponding to the grades defined above. ReLU

activation function is used in the hidden layers and softmax is used for the output layer.

Adam was used as optimizer with learning rate of 0.001 and crossentropy was used as loss function. The

neural network was trained with batch size being 16 and epochs 500. Algorithm is taken from [7].

From the results, it was observed that,

- Validation Loss = 0.81 and validation accuracy = 54.17%

- Test Loss = 0.5534 and Test Accuracy = 90.0%

Figure 2. Train Loss and Validation Loss Vs Epochs

2.3 CasPer Neural Network

Cascade-correlation (CasCor) is an architecture and generative, feed-forward, supervised learning

algorithm for artificial neural networks. CasCor begins with a minimal network, then automatically trains

and adds new hidden units one by one creating a multi-layer structure. In this algorithm, hidden units are

added only one at a time and do not change after they have been added. For each new hidden unit, the

algorithm tries to maximize the magnitude of the correlation between the new unit's output and the residual

error signal of the network. However, the disadvantages of CasCor are, due to smaller size of network early

neurons are poor feature detectors and this algorithm leads to too large network in later phases.

CasPer uses Progressive RPROP, to train the network. CasPer does not use a correlation measure or weight

freezing but uses RPROP to train the whole network. CasPer results in smaller networks than CasCor and

provides better generalization than CasCor. CasPer algorithm maintains 3 regions in the network

- L1: Weights connecting to new neuron

- L2: Weights connecting from new neuron to output neurons

- L3: all remaining weights

Figure 3. CasPer Algorithm

Unlike CasCor algorithm, CasPer algorithm allows old weights to be changed. CasPer uses weight decay
to improve generalization. Weight decay uses Simulated Annealing

Where, Hepoch = epochs since addition of last hidden neuron
D = decay parameter

The basic idea of RPROP is that if the error gradient for a given weight had the same sign in two consecutive

epochs, we increase its step size, because the weight’s optimal value may be far away. If, on the other hand,

the sign switched, we decrease the step size.

CasPer algorithm is taken from [8].

Figure 4. CasPer model’s k-Fold Vs Accuracy

Figure 5. CasPer model’s k-Fold Vs Loss

Results after k-Fold cross validation, where k = 5 folds

Average Test Loss = 0.90 and Test Accuracy = 64.80%

2.4 Feedforward Neural Network with / without Greedy Layer-wise Pretraining

Below given charts depict the validation loss for given number of layers added. As we can observe, the

validation loss is increasing while the layers are being added. Test loss and Test accuracy are calculated

with the optimal number of layers found.

1. FFNN with GLP: Test Loss = 3.0755, Test Accuracy = 26.67%

Figure 6. FFNN GLP Validation Loss Vs Layers added

2. FFNN without GLP: Test Loss = 420.6770, Test Accuracy = 30.0%

Figure 7. FFNN without GLP Validation Loss Vs Layers added

2.5 Evaluation methods

Results obtained using the Feedforward neural network are compared with that of the Feedforward NN with

GLP, Feedforward NN with additional layers (without GLP), and Casper neural network.

Model Test Accuracy

Feedforward NN with fixed layers 90.00%

CasPer NN 64.80%

Feedforward NN with GLP 26.67%

Feedforward NN without GLP 30.00%

Table 1. Model accuracy comparison

3 Results and discussion

3.1 Comparison of various models

The models (except CasPer) were trained on 64% of the dataset and remaining data was used for validation

and testing purpose. For comparison purpose same test data was used in all the models. Since dataset size

is small, it was observed that the accuracy of the Feedforward NN model is higher than that of other models.

CasPer NN gives the flexibility of adding intermediate hidden layers automatically depending on the need.

However, in case of Feedforward NN we need to define the number of hidden layers at the time of defining

the model.

4 Conclusion and Extensions

Using deep learning with small datasets usually results in overfitting. Same is proven with the

experimental results. To deal with overfitting, we can incorporate the below two strategies into our

Feedforward NN model: L2 Regularization and Dropout. When we use these strategies, validation

loss will closely match with training loss.

There are two extensions proposed in [3] for CasPer NN. The first is to employ the SARPROP

algorithm to train the newly inserted hidden neuron. SARPROP is based on the RPROP algorithm

and uses Simulated Annealing to enhance the convergence properties of RPROP. SARPROP has

been shown to be successful in escaping local minima, a property which will enable a better search

of the error surface by the new hidden neuron. The second extension involves CasPer training a

pool of hidden neurons, as is done in CasCor. Each hidden neuron in the pool is trained using

SARPROP, as in the first extension.

References

1. Choi, ECY and Gedeon, TD "Comparison of Extracted Rules from Multiple Networks," invited

paper, Proceedings IEEE International Conference on Neural Networks, vol. 4, pp. 1812-1815, Perth, 1995.

2. https://wattlecourses.anu.edu.au/pluginfile.php/2558398/mod_resource/content/6/NN9_cascor%2BCas

Per.pdf

3. N. K. Treadgold and T. D. Gedeon, “Extending and benchmarking the CasPer algorithm. Advanced Topics

in Artificial Intelligence”, pp. 398–406. https://doi.org/10.1007/3-540-63797-4_93

4. https://www.freecodecamp.org/news/how-to-build-your-first-neural-network-to-predict-house-prices-

with-keras-f8db83049159/

5. https://medium.com/@andreluiz_4916/pytorch-neural-networks-to-predict-matches-results-in-soccer-

championships-part-ii-3d02b2ddd538

6. https://machinelearningmastery.com/pytorch-tutorial-develop-deep-learning-models/

7. https://towardsdatascience.com/pytorch-tabular-regression-428e9c9ac93

8. https://github.com/chehao2628/ImprovedCasper/blob/master/CasperNetwork.py

9. N. K. Treadgold and T. D. Gedeon, “A cascade network algorithm employing Progressive

RPROP,” Biological and Artificial Computation: From Neuroscience to Technology, pp. 733–742, 1997,

https://doi.org/10.1007/bfb0032532

10. dmlicht, “How to block calls to print?,” Stack Overflow, Dec. 05, 2011.

https://stackoverflow.com/questions/8391411/how-to-block-calls-to-print#:~:text=use%20with

11. chehao2628, “chehao2628/ImprovedCasper,” GitHub, 2021.

https://github.com/chehao2628/ImprovedCasper/blob/master/CasperNetwork.py

12. https://www.facebook.com/MachineLearningMastery, “How to Use Greedy Layer-Wise Pretraining in

Deep Learning Neural Networks,” Machine Learning Mastery, Jan. 31, 2019.

https://machinelearningmastery.com/greedy-layer-wise-pretraining-tutorial/

https://wattlecourses.anu.edu.au/pluginfile.php/2558398/mod_resource/content/6/NN9_cascor%2BCasPer.pdf
https://wattlecourses.anu.edu.au/pluginfile.php/2558398/mod_resource/content/6/NN9_cascor%2BCasPer.pdf
https://doi.org/10.1007/3-540-63797-4_93
https://www.freecodecamp.org/news/how-to-build-your-first-neural-network-to-predict-house-prices-with-keras-f8db83049159/
https://www.freecodecamp.org/news/how-to-build-your-first-neural-network-to-predict-house-prices-with-keras-f8db83049159/
https://medium.com/@andreluiz_4916/pytorch-neural-networks-to-predict-matches-results-in-soccer-championships-part-ii-3d02b2ddd538
https://medium.com/@andreluiz_4916/pytorch-neural-networks-to-predict-matches-results-in-soccer-championships-part-ii-3d02b2ddd538
https://urldefense.com/v3/__https:/machinelearningmastery.com/pytorch-tutorial-develop-deep-learning-models/__;!!A4F2R9G_pg!PQQGQ2axSlM_VRhi0Vgcb5URkigg0nrbche6EjfL0hrgX_7gS9y4aRL1DNrh-NPh9GWED3KMnVUImzo$
https://towardsdatascience.com/pytorch-tabular-regression-428e9c9ac93
https://urldefense.com/v3/__https:/github.com/chehao2628/ImprovedCasper/blob/master/CasperNetwork.py__;!!A4F2R9G_pg!PLb6QZ0kleTu2Asol355g8DX_EiTbDcOwGpLAKxDjPckaw7czpw7gR3nRWY_AFj5toJQMNbzLE-iJ7E$
https://doi.org/10.1007/bfb0032532
https://urldefense.com/v3/__https:/stackoverflow.com/questions/8391411/how-to-block-calls-to-print*:*:text=use*20with__;I34l!!A4F2R9G_pg!IEdZKG1RG4DpwDTGhTgM4cgObOOExT6Qo6uD_0G8cKl2HYkqc4e-2eNCn7BCz4uMgw$
https://urldefense.com/v3/__https:/github.com/chehao2628/ImprovedCasper/blob/master/CasperNetwork.py__;!!A4F2R9G_pg!IEdZKG1RG4DpwDTGhTgM4cgObOOExT6Qo6uD_0G8cKl2HYkqc4e-2eNCn7CXoyFCRw$
https://urldefense.com/v3/__https:/www.facebook.com/MachineLearningMastery__;!!A4F2R9G_pg!NUCSrHK3Y_La9-Zn8M_GXZFgbaR6rLvVIFZvj-wy8nfSgBiCsgNW6quXMpSL3eBlGRHNq2KGEVIs-co$
https://urldefense.com/v3/__https:/machinelearningmastery.com/greedy-layer-wise-pretraining-tutorial/__;!!A4F2R9G_pg!NUCSrHK3Y_La9-Zn8M_GXZFgbaR6rLvVIFZvj-wy8nfSgBiCsgNW6quXMpSL3eBlGRHNq2KG4Bhljgc$

