Determining Input Contribution for Classification Neural
Networks using Analysis Techniques and Genetic
Algorithms

Solomon Uko Inyang ‘

[Commented [S1]:

Research School of Computer Science,
Australian National University,
Acton ACT 2601 Australia,
u6701825@anu.edu.au

Abstract. Determining which features are useful for producing accurate models
has been a consistent problem for machine learning researchers. We construct a
simple feed forward network to predict a student’s final grade based on each of
their assessment marks before the final exam. The first part of the paper uses
weight matrix analysis techniques to determine the input contribution of each
feature. The second part of this paper uses a genetic algorithm and a brute force
approach to select the features with the highest contribution, retrain the model
using these features, and compare the results to the previous model. We then
compare network performance between each of these techniques. The results
we achieve show that these techniques are an effective way of determining
input significance for different features, although the results are less
pronounced than in Gedeon’s study.

Keywords: mark prediction, data encoding, classification, feature selection.

1 Introduction

Feature selection for neural networks remains a difficult but important task, despite a
substantial amount of research being conducted in this area. In “Data Mining of
Inputs: Analysing Magnitude and Functional Measures” by Tamas D. Gedeon [1],
Gedeon examines the prospect of using weight matrix analysis techniques to calculate
and rank the contribution of input features, and then eliminates inputs with a brute
force method to determine the effect on performance.

In this paper we replicate this methodology for identifying and ranking input
contributions and evaluate the effect the removal of less significant inputs has on
network performance. We extend the work by incorporating a genetic algorithm that
produces a set of the best input features and retrains the model after eliminating the
inputs that are not included in this set. A genetic algorithm is chosen as this is an
optimization problem with no optimal solution and thus this algorithm is an
appropriate choice. We then compare the results of our brute force method to the
baseline network and the genetic algorithm method to determine which is more
effective in terms of network performance.

We create a simple feedforward neural network that aims to predict a student’s final
grade using their marks from assessments prior to the final exam. The motivation for
this model is to create a system that gives students the opportunity to see what their
final grade could be if they continued at their current work pace throughout the rest of
the course. The main investigations of this task are to see if analysis techniques such
as analysing magnitude can be utilised to determine the contribution of each input to
an output grade, and then evaluate the effect on network performance when we
remove the inputs with the smallest contribution. This shows which assessment items
have high correlation to the final grade. For example, we could determine if a student
that scored highly in the mid-semester exam could expect to receive a good mark in
the final exam and receive a ‘Distinction’ grade. The elimination of inputs is done
through two methods. The first is a brute force approach that ranks inputs based on
their contribution value calculated from the analysis and eliminates the two least
significant inputs. The second is a genetic algorithm that determines the most ideal
inputs to use in the network from a pool of candidates through a process of mutation
and reproduction.

2 Method

2.1 Preparing the Data

The assigned dataset paper was the “Comparison of Extracted Rules from Multiple
Networks” [2] paper by Edwin Che Yiu Choi and Tamas Domonkos Gedeon. The
accompanying dataset was a set of assessment marks for a hypothetical Computer
Science course “COMP1111”. The marks contributed to 40% of each students’ total
mark, with the remaining 60%, the final exam mark, being left out. The four grades
were Distinction - a final mark greater than 75, Credit — a final mark between 65 and
74, Pass — a final mark between 50 and 64, and fail — a final mark less than 50.

In its original state, the data columns were not well defined, and the assessment marks
were not in a readily usable form. Thus, the first task was to prepare the data for
training and testing. The column names were specified by the assessment names
found at the top of the data. Since the majority of assessment marks were numeric, we
were required to transform this data from the object type to a numeric type. “N/A”
values for each of the data columns were handled by assigning each missing value the
average of its column to ensure our data is not skewed. For the columns that were
categorical values, such as ‘Tutgroup’, we use integer encoding to transform their
values to be numeric. Lastly, the student registration number column is dropped from
the feature set as it does not prove to be useful in training. We endeavored to solve a
classification problem, however the target column for this data was the final mark the
students received, not their grade. Thus, the final mark column is split into 4 classes
for classification, with an output of 0, 1, 2, or 3 corresponding to a ‘Distinction’,
‘Credit’, ‘Pass’, and ‘Fail’ grade, respectively.

2.2 Training the network

The network topology used was a three-layered neural network consisting of fourteen
inputs, five hidden units and four output units. This topology was chosen as it was
used in the dataset paper, and it corresponded with the 14 assessment marks (features)
and the 4 output grades. In order to remain consistent with the technique paper, the
network was trained using error-backpropagation and a basic sigmoid logistic
function was used as the activation function. Because we are measuring the
performance of a classification model, we use a Cross-Entropy loss function as it
minimises the distance between probability distributions. After running the network a
number of times with different epoch numbers and learning rates, we conclude that a
learning rate of 0.01 and epoch number of 5000 provide the best results.

2.3 Analysis Techniques

We implement the following analysis technique for determining contribution,
proposed in the paper “Feature Selection Using Neural Networks” by Linda Milne
3

nhidden wji

I;El Z;;Hipt{f.s "lUJ.',f 0]

ninputs nhidden wip

J Ay
Z (Z ninpuls ‘u}”\l')

k=1 =1 X wj

With ninputs representing the number of inputs, nhidden representing the number of
hidden units and noutputs representing the number of outputs respectively. A
significant disadvantage with this method is that it can result in inconsistent values as
the combination of positive and negative weights can cancel out contributions. Thus,
we can use absolute values to account for this:

nhidden Wi 0w
: _ninputs il
j=1 Xi=j Wit
ninputs nhidden Wi
Z (Z L w D
ninpuf s *Hro)

k=1 =1 X Wiy

This technique is effective because it retains the importance of the magnitude of the
input and its contribution to each output, whilst disregarding the sign of the
contribution which is largely irrelevant.

2.4 Brute Force Analysis

The brute force analysis technique presented in [1] is to eliminate inputs randomly
and compare the results of the retrained network with the original. In our paper, we
rank the input contributions we obtain and then eliminate the two inputs with the least
significant contribution to test the effect on network performance.

2.5 Feature Selection using a Genetic Algorithm

In addition to the brute force technique for input elimination, we present a method
that utilises evolutionary algorithms. In this method, a genetic algorithm is trained to
select the most desirable inputs within the feature set. We first assign random truth
values for each input that determines the initial population and whether or not a
specific will be included in this population. Then, for each generation, we select the
four best parents in the population for mating and create the subsequent generation
using crossover — reproduction of off-spring based on the genetic materials of the
parents — and mutation — a small genetic tweak to the off-spring to diversify genetics.
After iterating through each generation, we are left with an array of the most ideal
features to use for the network based on our fitness function.

Following this process, we eliminate the columns not chosen by our genetic algorithm
from the dataset and retrain the model with this reduced data. We also generate new
contribution values for each input.

3 Results and Discussion

3.1 Input Contribution from Analysis

Input Contribution to Output Distinction Grada

Input 13: 0.07 1466267108917 24 £ Imput 0: 0.0714707 59800017 18

Input 12: 0.07 18893557 7868415 Input 1:0.07 170692831277 847

Input 11: 0.07 140979815857 31

Input 10: 0.07 1626894 17600632
Input 8: 007160384081 :93::!"
7

Input B: 0.07168921083211888——

Input 2: 0.0715824 5146274 567

Input 3: 0.07 144616544 2466

Input 4:0.07 14187 1005296707

Input 5: 0071487 1957 69814

Input 7: 00715435594 3202072 Input 6: 007151824 235916138

M nput o I Input 1 input 2 Il Input 3 Input 4 Input 5
Input & Input 7 M@ input s E@inputs B8 input 10 Il Input 11

M input 12 Input 13

Input Contribution to Cutput Fal Grade

Input 13: 0.07 135067 135095596 Input 0: 0.07 145105302333832

Input 12: 0.07 1244224908967 74,

 Input 1:0.07 144 436240196228

Input 11: 0.07 16763064 2552512‘\\ Input 2: 0.07 155609130850375

Input 10: 0.07 1522124 11165237 ‘ Input 3: 0.07 14057460427 2807

Input 9: u.nvusuuussaw/ Input 4: 0.07 15022608637 8098

Input 8: 0.07 1319557 72638321 s Input 5: 0,07 148887 96210289

Input 7:0.07141446322202682 Input 6: 0.07 13687 613606453
M nputo M input 1 Input 2 Bl Input 3 Input 4 Input 5
Input 6 input 7 @ input& E@inputs B nput 10 8 input 11
M input 12 Input 13

These results show that the input contribution for each feature was quite similar.
There was no single feature that had a significant impact on final grade for either the
Distinction grade or the Fail grade.

3.2 Performance of the neural network when inputs are eliminated

Table 1. Comparison of network performance with various numbers of features

Trial Network Number | Network Number | Network Number
Performance | of Performance | of Performance | of
Before Features | Before Features | Before Features
Feature Before After After After After
Selection Feature Genetic GA Brute Force BF
Selection | Algorithm Feature Feature Feature
Feature Selection | Selection Selection

Selection

1 65.4% 14 61.8% 11 58.6% 12
2 57.6% 14 33.3% 5 77.4% 12
3 58.3% 14 55.2% 8 59.4% 12
4 61.5% 14 45.7% 5 64.3% 12
5 43.3% 14 55.2% 6 68.9% 12
6 50.0% 14 56.7% 7 53.1% 12
7 61.3% 14 62.1% 7 54.5% 12
8 56.2% 14 65.9% 8 59.375% 12
9 56.5% 14 45.2% 6 53.8% 12
10 61.3% 14 65.6% 7 55.2% 12
MEAN | 57.14% 54.67% 60.46%

To test the performance of the network with different feature selection methods, we
run a number of trials and then determine a mean accuracy for that method. The mean
performance of the network using all the original features was 57.14%. The network
performed worse on average when using only features selected by the genetic
algorithm, achieving only a 54.67% accuracy. The Brute Force method performed the
best of the three achieving a mean accuracy of 60.46%.

Part of the genetic algorithms’ poor performance can be attributed to the fact that it
always had the smallest number of input features. Generally, having more features is
beneficial to training neural networks, so the genetic algorithm using smaller sets of
features compared to the original network and the brute force method likely
contributed to it having the lowest score.

4 Conclusion and Future Work

In this paper, an analysis technique for determining the input contribution for each
output class was evaluated. Two techniques were introduced for the elimination
inputs based on contribution: A brute force approach that removed the two least
significant inputs, and a genetic algorithm that determined the best feature set. The
results show that the analysis technique presented in [1] can be effectively used to
rank inputs according to their contributions to each output, although the differences in
contribution are not as decidedly clear as they are in Gedeon’s study. Further, we can
conclude that various algorithms can be implemented to remove certain inputs based
on their contributions, such as genetic algorithms or ranking-based elimination, with
the latter being generally more successful.

Further work may include using sensitivity analysis as an additional contribution
analysis technique, which utilises differentiation to determine the functional
contribution of inputs to outputs. It would also be useful to consider how these
analysis techniques fare when applied on multilayer networks larger than three-layers.
Lastly, it may be beneficial to explore the effectiveness of other types of algorithms
that can be employed to determine the most significant inputs, specifically Deep
Learning or Fuzzy Logic approaches.

References

—

. Gedeon, Tamas D. "Data mining of inputs: analysing magnitude and functional measures."

International Journal of Neural Systems 8, no. 02 (1997): 209-218.

. Choi, Edwin Che Yiu, and Tamas Domonkos Gedeon. "Comparison of extracted rules from

multiple networks." In Proceedings of ICNN'95-International Conference on Neural
Networks, vol. 4, pp. 1812-1815. IEEE, 1995.

. Milne, Linda. "Feature selection using neural networks with contribution measures." In

AICONFERENCE-, pp. 571-571. World Scientific Publishing, 1995.

