
Controlled Dropout using Functional Measures in ANN and CNN
architectures: An Example using Pupillary Responses to Real and

Posed Smiles

Jesse Wright1[0000−0002−5771−988X]

Australian National University, Canberra ACT 0200, Australia https://www.anu.edu.au/
jesse.wright@anu.edu.au

Abstract. Time series classification (TSC) is a well known data-mining challenge. Recently, there has been
investigation into the use of Artificial Neural Networks (ANN’s) and Convolutional Neural Networks (CNN’s)
to address this. In this paper we perform a comprehensive study investigating the use of Functional Measures
to enhance each of these approaches. For ANN’s, a common hurdle is that of extracting and selecting features
of datasets on which to train neural networks. Factors that increase the difficulty of such a task include: having
small or unbalanced datasets; working with data that has already been pre-processed by other parties and
working with data which has a large set of possible features to extract. This paper analyses existing techniques
of weight matrix analysis, functional measure analysis and sensitivity analysis to help solve a classification
problem on real-world timeseries data. Contrastingly Convolutional Neural Networks, which take the timeseries
itself as input, are known to have high training times, poor explainability and are susceptible to overfitting.
We address this problem by introducing a novel technique for controlled dropout between convolutional layers
which extends upon existing Angle-Based functional measures.
Trials for this experiment are run on a range of network models (including ANN, CNN and SVM classifiers),
optimizers and training sets in order to analyse the generalisability of each technique. Our findings indicate
that on average > 30%, and in certain cases > 99%, of nodes in fully connected CNN layers can be dropped
without impacting accuracy. We also show that our novel dropout technique can reduce bias in basic CNN’s
and prune unnecessary neurons in more complex models. Due to limitations in the dataset, all ANN techniques
were found to yield results of between 45-60% accuracy. Based on the range of tests applied, we conclude that
such techniques are limited in their capacity to improve network accuracy on the given dataset.

Keywords: Distinctiveness Analysis · ANN · CNN · Time Series · Observers · smilers’ · Physiological Features
· Controlled Dropout · Functional Measures

1 Introduction

Time Series Classification (TSC) refers to the task of labelling time series data; and is considered one of the most
challenging data mining problems of the last two decades [35] [9].

Due to a growing abundance of Time Series datasets [32], many data mining techniques have been applied to TSC
[2]. These include: one-nearest-neighbour dynamic-time-warping [1], elastic ensemble [22], time series forest [7] and
the collective of transformation-based ensembles (COTE) [3]. However, such techniques have critical shortcomings
[2], such as: COTE having a O(n2T 4) time complexity where n is the number of time series and T is the length of
the time series [11]; and the remaining techniques being a factor of 2-12x less accurate, when compared on datasets
such as the UCR Archive [6], [2].

More recently, there has been research into application of Deep Neural Networks (DNNs) to the task of TSC
[10]. In particular, CNN architectures have seen widespread usage in classification tasks with a large input size and
in more recent years, they have begun to be adopted for the task of time series classification [37].

Whilst such techniques have been proven to yield high accuracies [11], there are several shortcomings to their
current usage. This includes high computational costs for training [30]; overfitting [5]; and poor explain-ability of
networks [25]. Consequently, there is demand for techniques which minimize these factors. One such technique that
has been applied to many other network architectures is Dropout, which reduces the number of active nodes in the
network over time and hence reduces the impact of all 3 aforementioned issues [4]. However, many recent works
have concluded that traditional dropout techniques often detrimentally impact in the training of CNN’s [4]. Hence
there is an incentive to find ways of implementing dropout on CNN architectures designed for timeseries’ that do
not negatively impact performance.

Smiling can be used to convey various human emotions including joy, surprise and nervousness [18]. Smiles can
also be posed for dispassionate reasons such as communication or out of social etiquette [8]. Throughout this paper
we consider two classes of smiles: real smiles, which arise from happiness; and posed (controlled) smiles.
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Existing work classifying real and posed smiles has demonstrated 96.1% [19] prediction accuracy. Three physio-
logical signals from 24 observers reacting to 20 distinct stimuli were used to achieve this.

In this work we use only pupilliary response for the purpose of prediction. Pupilliary response can be affected
by a multitude of factors including pain, stress, cerebral activity and visual stimuli [15]. Hence it is likely that pupil
size will be subject to change differently based on whether real or posed smiles are being viewed. However, this
data is also likely to be noisy given the range of influences on pupil size; substantially increasing the difficulty of
the classification task due.

The dataset used [19] comes from existing studies, which present two forms of the data. The first consists of 20
pre-processed features of 10 observers ‘average’ response to real or posed smiles. Given the large number of features
relative to the number of datapoints, this view of the dataset is well suited to a joint approach of feature selection,
followed by classification with an ANN [21].

The second view of the dataset consists of 2 timeseries’ (one for each pupil) for each of 10 participants, each
watching 10 smilers’ videos. In order to directly perform classification on this sequential data, we choose to employ
deep learning techniques [29]; in particular - we use a basic CNN approach; and then extend this to the recently
developed InceptionTime model [11]. With these CNN architectures we are able to rigorously test our novel approach
extending DropBlock [14].

Together, these views make the dataset well suited to our study of using Functional Measure for Controlled
Dropout - including first layer feature selection.

Networks in this experiment were trained with error-backpropogation [31] using cross-entropy loss [36]. To en-
sure fair comparison with existing work [13], all connections are forward passing weighted links between consecutive
network layers. The networks were trained on pre-processed and labelled feature vectors. Further trials were per-
formed in the ANNs with training sets consisting of additional data points extrapolated from the original training
data. Network training was terminated after a fixed number of epochs to reflect resource limitations when these
techniques are applied in the real world. Following this, the test set accuracy was recorded. For the ANNs in this
study, we have used the Sigmoid Logistic Activation function y = (1 + e−x)−1 and Leaky Rectified Linear Units
(LReLU) [24] with a gradient of 0.01 for negative inputs. Due to the limited size of the dataset for the ANNs, we
used leave-one-subject-out (LOSO) cross-validation [16] to improve our analysis of the networks. The results pre-
sented in this paper are the aggregated results from the test set in each trial of LOSO cross-validation. Since every
datapoint is used in the LOSO cross-validation, we present results for several predetermined network architectures
rather than performing feature engineering with data that is also used for analysis. This improves the integrity of
our results [20].

For our study with the CNNs, we also need to ensure that all test data is fully free from training data. To
do so, we extend upon the Independent Approach introduced in a previous study which used a superset of the
data analysed in this paper [19]. To achieve this; all hyperparameter selection is performed with all data relating
to 3 chosen individuals, and 8 chosen stimuli removed1. Leave-one-subject-and-one-stimulus-out (LOSSO) cross-
validation [13] can then be robustly achieved by using test sets consisting only of combinations of the aforementioned
persons and videos. This way, no information from the test set is able to influence the results.

2 Network Topologies

2.1 ANN

Our techniques were evaluated on a 20-10-2 network topology; that is, twenty inputs, ten hidden neurons, and
two output neurons and a 16-10-10-2 network topology. For each topology we ran tests with the Sigmoid Logistic
Activation function and separately with the Leaky ReLU activation function.

2.2 Deep Learning Architectures

Basic CNN The base CNN architecture (c.f. Figure 12) consists of 5 1-dimensional convolution layers with sizes
2, 32, 64, 32 and 16 respectively. They are all given the same kernel size which is a calculated hyperparameter.
Following this is a dropout layer, with dropout rate given by a calculated hyperparameter. There is then a 1-
dimensional pooling kayer with kernel size 2. The channels are then flattened and fed into a 10 node linear layer
with ReLU activation which is followed by a 2 node linear layer with Softmax activation to produce the binary
prediction.

1 The labels for the observers are p2, p4 and p9 and labels for the 8 videos are H1, H2, H3, H5, A1, A2, A3, and A4
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Inception Time InceptionTime [11] is a network architecture that extends upon traditional CNN’s; designed with
the intention of creating a generic CNN architecture for deep learning on time series’ akin to the role of AlexNet in
time series’. It has been found to have a prediction accuracy comparable to that of existing state-of-the-art classifiers
such as HIVE-COTE, whilst also providing a more scalable design [11].

Fig. 1. Inception Module [33]

The Inception architecture was originally developed for classification of data from ImageNet [33]. An inception
module consists of an ensemble of convolutional and pooling layers whose results are concatenated together to pro-
duce a ‘filter concatenation’ (c.f. Figure 1) which acts as the input to the following layer. A basic Inception network
can then be formed by layering several inception module’s together; max-pooling layers can also be introduced to
reduce the dimensionality of the grid.

Fig. 2. InceptionTime architecture [11]

The InceptionTime architecture (c.f. Figure 2) consists of an ensemble of 5 deep learning models for TSC. It
is created by cascading [23] inception modules; where each module has the same base architecture, and different
randomly initialised weights. It also includes filters which have varied lengths so as to enable learning over time
sequences of varied lengths.

The InceptionTime Model has 3 hyperparameters determining its architecture. The first is the number of in-
ception modules to cascade, we note that there must be at least 1 inception module in order for the network to
learn; and we limit the depth to a size of 4 due to resource constraints. The second is the number of channels to use
at a bottleneck; since the data we are working with consists only of 2 channels (left pupil dilation and right pupil
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dilation), the choice is limited to single channel bottlenecks or disabling bottlenecks within the network. The final
constraint is the size of the (largest) kernel size in the inception module with the following two blocks using kernels
of 1/2 and 1/4 of the largest kernel size respectively. Hence, the kernel size parameter should be a strictly positive
multiple of 4.

Hyperparameter Selection Hyperparameter selection for the Basic CNN and the InceptionTime model were
each performed in 2 stages. First the hyperparameters determining the model architecture were selected using a
learning rate of 0.01 over 20000 epochs. Each possible combination of hyperparameters were tested. The loss over
the last 50 epochs was then analysed and the combination of parameters with the lowest average, for the lowest
40% of losses, was selected.

Once the model architectures were selected, they were tested with learning rates from 0.005 to 0.02 over 20000
epochs. The learning rate which had the lowest average for the bottom 40% of losses over the last 50 epochs was
then selected.

Hyperparameter Range Selection

Dropout Rate 0.25, 0.5, 0.75 0.25

Kernel Size 4, 8, 16, 32 4

Learning Rate 0.005, 0.01, 0.015, 0.02 0.01

Fig. 3. Hyperparameter selection for Basic CNN

Hyperparameter Range Selection

Number of inception modules 1, 2, 3, 4 4

Kernel Size 4, 8, 16, 32 32

Bottleneck Channels Yes, No Yes

Learning Rate 0.005, 0.01, 0.015, 0.02 0.01

Fig. 4. Hyperparameter selection for InceptionTime

Figures 3 and 4 and outline the values for hyperparameters that were tested and the subsequent selections.
All test data to be used in the LOSSO validation was removed prior to performing hyperparameter selection.

3 Analysis Techniques

We analyse the following techniques on ANNs:
Garson measure (1991) [12] which calculates the proportional contribution of an input to a particular output:

Gik =

∑nh
j=1 Pij · wjk∑ni

q=1

(∑nh
j=1 Pjk · wqj

) (1)

where
Pjk =

wjk∑nh
r=1 wrk

(2)

Milne measure (1995) [27] which modifies Garson measure to prevent the sign of the contribution being lost.
This is done by setting

Pjk =
|wjk|∑nh
r=1 |wrk|

(3)

Wong measure (1995) [34] which distinguishes th magnitude of the contribution from the sign of the contribution:

Qik =

nh∑
r=1

(Pir × Prk) (4)
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where Pik is as defined for Milne measure.

Angle measure [13] which analyses hidden neuron activation’s when data from the training set is applied. This
enables one to determine the angle between the mutli-dimensional vectors that are formed:

angle (i, j) = tan−1


√√√√∑pats

p sact(p, i)2 ∗
∑pats

p sact(p, j)2∑pats
p (sact(p, i) ∗ sact(p, j))2

− 1


where

sact(p,h) = activation (p,h)− 0.5

To transform this angle into a measure between with a range of [0, 1] we have crafted the metric

L(i, j) = |1− 4

π
|angle(i, j)||

which can be used in conjunction with a threshold value t ∈ [0, 1] to create the condition for a neuron/input to
dropout when L(i, j) ≤ t. In our implementation, the choice of dropping i or j is done randomly. An alternative
method would be to drop whichever has the largest value of L with respect to all other neurons in the layer.

3.1 Extending Analysis Techniques for CNN architectures

Many recent works have concluded that traditional dropout techniques often have detrimental impact in the training
of CNN’s [4]. It is hypothesised that this is in large part, due to the conflict between dropout and batch normalization.
DropBlock [14] is a technique which addresses this by introducing a more structured form of dropout in which
contiguous elements of a feature map are collectively dropped.

We produce a novel extension to this technique, by using Angle measure to determine the appropriate section
of the feature map to drop. Our selection method uses a predefined hyperparameter w which determines the width
of the block to be dropped either side of the selected node. We use w = 5 throughout our experiments.

We assign to each node in a channel n (except those less than a distance w from either end of the channel),
a value Kw,n(i). This corresponds to the average Angle measure between the node and all other elements in the
channel excluding those nodes within a radius of w of the node - this is to reduce the likely-hood of all elements
representing the same feature from being dropped together.

Kw,n(i) =

∑i−w
j=1 L(i, j) +

∑nh
j=i+w L(i, j)

nh− 2w

We note that Kw,n(i) is only well defined for w ≤ i ≤ nh− w. For w ≤ i ≤ nh− w we then define the average
of this value across each channel as

Jw(i) =
1

c

c∑
i=1

Kw,n(i)

where c is the number of channels. From this, we can determine the position which has the highest similarity to
other positions across all channels, this is given by

x = arg max
i∈(w,nh−w)

{Jw(i)}

Dropout is then performed with the additional parameters max blocks and threshold. Whenever dropout takes
place, all the Jw(i)’s are calculated. If there are any i such that Jw(i) ≥ threshold then x is calculated and we
dropout all nodes within a radius of w of x. An example of this dropout, in the case where w = 2, is given in Figure
5. This is repeated at most max blocks stopping earlier if the Jw(i)’s are less than threshold.
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w = 2

x

left pupil

right pupil

Fig. 5. Block dropout - w is a hyperparameter and x is selected using Angle measure

3.2 Implementation

For the ANNs, these techniques were implemented by creating custom dropout layers which set the value of ‘de-
selected’ features / neurons to zero. Consequently, the terms dropout and feature selection are used synonymously
throughout this paper.

The Angle Measure based DropBlock technique was added to the basic CNN model by replacing the existing
dropout layer. For the InceptionTime model we apply this extended DropBlock technique directly, following the
convolution layers in each of the inception modules.

4 Dataset: Smilers’ and Observers’ Physiology

4.1 Time Series Data

The data for this experiment was collected as part of a larger study of physiological responses to smilers’ stimuli
(video clips of real and posed smiles) [13]. It describes the pupillary sizes of 10 participants in reaction to smilers’
stimuli, with one channel for each of the observers left and right pupils. Each participant viewed 20 video clips, 10
of real smiles and 10 of posed smiles. Their pupillary response to each video response was captured at 60Hz for 10
seconds. This was clipped to 600 sample points per video and eye blink points were reconstructed with the cubic
spline interpolation technique [13]. The data was then smoothed using average filtering (Hanning window) and the
maximum value normalization technique was applied to keep signals in the range 0 to 1. When used in the CNN,
instances where data for either pupil in a trial was missing or corrupted, the data for both pupils was discarded.
The result is 185 sets of channels for posed smiles and 81 sets of channels for real smiles.

4.2 Feature Data

For each observer, the average pupil size at each time step of watching real smilers’, and watching posed smilers’ was
then taken. The result is 20 sets of time series data consisting of 1 average response to posed smilers’ and 1 average
response to real smilers’ per observer. We have access to the dataset in this format and use it to understand and
analyse the nature of the dataset. It is not used for model training and evaluation. Instead, we use features extracted
from these timeseries’ during previous research [19]. For each of the 20 pre-processed time series’ the following 20
features were extracted: mean, maximum, minimum values, interquartile range, variance, sum, skewness, kurtosis,
number of peaks, root mean squared error, aac, hjorth mobility, hurst exponent, mean first difference, mean second
difference, samp en, ap en and fuzzy en and are visualised in Figure 10.

Figure 9 presents the timeseries for the average responses to posed and real smilers’. There is an observable
correlation between the average time series for the real and posed smilers’. This justifies the need for LOSO
cross-validation which has also been used in previous work on the data [13]. To confirm this, we performed leave-
one-datapoint-out cross-validation on a 20-10-2 network with Sigmoid activation and found the average test result
to be 16%, significantly lower than the 50% prediction rate that is achieved by random selection on a 2 class
problem with an evenly balanced dataset. This correlation carries over to the feature statistics which are presented
in Figure 10.
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4.3 Data Preparation

In each iteration of LOSO cross-validation for the ANNs, the feature vector xraw (including test vectors) were
normalized (to xnorm) according to the equation

xnorm =
xraw −min(Tr)

max(Tr)−min(Tr)
(5)

where Tr is the training set. This ensures that the features (such as sum, cf. Fig 10) are not weighted unfairly based
on their magnitude relative to other features. Note that we do not include the test set statistics in the calculation
of the min/max constants for this equation, so as to ensure that data in the test sets have no influence on training
performance.

4.4 Data Extrapolation

As can be seen in Figures 9 and 10, there are clear indicators that a signal is from a response to a posed or real
smiler when considered with respect to the same observer. For instance in 80% of observers, the values for hurst
exponent and variance were larger for posed smiles than real smiles.

Based on this observation, we use four equations to extrapolate additional datapoints for training. Let pr, pf
denote the feature vector of average pupillary response timeseries for individual p for all real and posed smiles

respectively. Then for individuals p and q we can generate the new feature vectors f
(1)
p,q , f

(2)
p,q for posed responses

and r
(1)
p,q , r

(2)
p,q for real responses according to the equations

f (1)p,q = pf − pr + qr

r(1)p,q = pr − pf + qf

f (2)p,q =
pf + pr

2
+
qf − qr

2

r(2)p,q =
pf − pr

2
+
qf + qr

2

Importantly we note that these equations preserve the ‘order’ of each feature between the observation of real smilers’

and the observation of posed smilers’. That is, if pf ≤ pr and qf ≤ qr then f
(i)
p,q ≤ r(i)p,q.

We perform two sets of LOSO cross-validation experiments with this extrapolated data. One using the equations
f (1), r(1) (which we call the subtract add dataset) and the other using f (2), r(2) (which we call the difference of
averages dataset). In each of these experiments the training set is selected from the original features data, and

then for all p, q in the initial training set f
(i)
p,q, p

(i)
p,q are added to the expanded training set. We note that these

extrapolations are not performed on any data in the test set in order to maintain the integrity of our results.

5 Experimental Design

For the ANNs we ran each set of LOSO cross-validation experiments independently on the 3 feature datasets
described above (the original features dataset, the subtract add extrapolated dataset, and the difference of averages
extrapolated dataset). Each set of experiments consisted of independently training and evaluating the 4×2 networks
and optimizer combinations, and then running the experiments again with Garson, Milne, Wang and Angle dropout
techniques applied to each of the networks. All of the experiments were performed with a learning rate of 0.01 over
100 epochs. Dropout based on Garson, Milne, Wang or Angle measure was enabled on every 10th epoch after the
first epoch. To each ‘dropout’ layer we added the condition that at least 1/3 neurons/inputs in each layer must
remain activated, in order to ensure there are enough features to learn from [17]. The thresholds applied to each of
the measures were Garson - 0.93, Milne - 0.90, Wong - 0.90 and Angle - 0.92. Before each trial the random seeds
and network weights were reset. Thus, each technique is being evaluated on a model with the same initial weights
which improves the rigour of our experiment.

For the CNNs LOSSO validation was used; however only data from persons p2, p4 and p9; and videos H1, H2,
H3, H5, A1, A2, A3, and A4 which remain unseen. The remainder of the data was used for hyperparameter selection
and has thus been seen by the network. A dropout threshold of 0.8 was used throughout experiments and trials
were run with no extended dropout; and extended dropout with max blocks set to 1, 10 and 100. Each network
was trained and evaluated for 5000 epochs, with dropout taking place on epochs 1000, 2000 and 3000 so as to allow
time for the network to re-converge after the last round of dropout. The Adam optimizer was used to train the
CNNs as resource limitations prevent us from running enough epochs for SGD to converge.
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6 Results

We omit the results for training ANNs with the Stochastic Gradient Descent (SGD) optimizer as the loss function
did not converge after 100 epochs. For completeness, we note that the results of LOSO cross-validation were between
45% and 60% for all models and techniques when using SGD.

Figure 6 summarises the results of the the experiments run with the Adam optimizer. We can see that in all
instances, there is little or no performance increase obtained by use of each of the measures and that the base
network itself is approximately random in the results it produces. In all 3 tests, the Angle based measure performed
marginally worse than all other measures; however, the margin of error is too large to come to any conclusion. In
addition, hyper parameters such as threshold can impact comparative performance.

As a baseline for comparison, we also include the results obtained when training an SVM with a linear kernel
for 250 epochs on each dataset.

Dataset Technique Min. Test Accuracy Max. Test Accuracy Avg. Test Accuracy

Base 0.45 0.5 0.48
Original Garson Measure 0.45 0.5 0.5
Features Milne Measure 0.5 0.5 0.5

Wang Measure 0.5 0.5 0.5
Angle Measure 0.45 0.5 0.46

SVM 0.45 0.45 0.45

Base 0.45 0.55 0.50
Subtract Garson Measure 0.5 0.55 0.53

Add Milne Measure 0.5 0.55 0.51
Wang Measure 0.5 0.55 0.51
Angle Measure 0.5 0.55 0.51

SVM 0.6 0.6 0.6

Base 0.35 0.55 0.48
Difference Garson Measure 0.55 0.50 0.51

of Milne Measure 0.5 0.55 0.51
Averages Wang Measure 0.5 0.55 0.51

Angle Measure 0.45 0.55 0.5
SVM 0.55 0.55 0.55

Fig. 6. Summary statistics for testing basic neural networks with various measures

Network Architecture No Extended Dropout 1 max blocks 10 max blocks 100 max blocks
Basic CNN 33.3 45.8 41.7 41.7

InceptionTime 54.1 41.6 41.6 54.1

Fig. 7. Comparison of performance of CNN’s with and without BlockDrop based on Angle Measure

Module Mean Median
1 38.1 19.9
2 80.1 88.1
3 57.1 57.1
4 98.8 98.8

Combined 68.5 89.8

Fig. 8. Dropout Statistics for InceptionTime
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7 Discussion

We observe from Figure 6 that in the case of the original feature set, all ANN’s and the SVM are producing results
equatable to that of random selection given the even distribution of classes in the feature dataset. The inability
of the SVM to produce meaningful predictions indicates that there are no linear solutions to the problem and the
inability of the base ANN’s to produce meaningful predictions is also not surprising given the limited size of the
dataset.

We reason that we cannot expect that the use of these measures for dropout/feature selection in the ANNs, to
yield a performance increase on a network that has not learned any meaningful information about the data set.
This is because the measures rely on artefacts of the trained network, namely it’s weights and activation, in order
to determine which features to select.

In both CNN experiments we have also found minimal performance gain from the use of our functional-measure-
based dropout. However, we note that in the case of the DNN, the BlockDrop extension based on Angle Measure
resulted in a significantly high level of dropout (in some cases layers reported dropout rates of > 99% whilst still
maintaining the level of prediction corresponding to that of no dropout).

We observe that in our results, there was a bias towards the classification of posed Smiles. This is likely a result
of the class imbalance in the timeseries dataset. In the case of the Basic CNN the original 5/1 posed/real ratio
without extended dropout was reduced to an 3/1 ratio with a max block size of 100. This indicates that the dropout
may have some influence in reducing the over-fitting of the data.

In comparison to the 96.1% accuracy achieved with an ensemble of KNN, SVM and NN classifiers on the 3
physiological responses [19], the results obtained in this experiment are poor. However, we cannot make a fair
comparison between the results of these two papers, due to the fact that the classifiers used had differing levels
of information available and used different classification architectures. We do observe that with 24 observers the
authors of the given paper were able to achieve an average accuracy of over 75% for neural network classifiers;
which indicates that it may be plausible to obtain non-trivial predictions from the subset of observers provided.
This creates space for further work on this limited dataset with improved hyperparameter tuning.

8 Future Work

There were a limited number of epochs for which each network was trained. We found in a set of separate series
experiments that the network was able to obtain an accuracy of 60% when evaluated with LOSO cross-validation
if an individual network with 1 hidden layer and SGD activation was run for over 50000 epochs. At present we are
unable to run such an experiment on all optimizers, models and techniques due to resource limitations.

As this work made use of only features that had already been extracted and pre-processed from the time series
by another party, another direction of future work would be to investigate whether performance increases could be
obtained by extracting more descriptive features from the dataset.

It would also be beneficial to have baseline comparison to feature selection performed using statistical methods
on the training set. For instance, training could be performed on just the features min, iqr, skw, samp en, ap en,
and fuzzy en, which are the values with the greatest value of F for the ANOVA test [26].

The current technique for data extrapolation maintains a linear relationship to original datapoints. Research
indicates that when generating extra training data, it can be useful to add noise [28]. Other techniques for data
extrapolation could also be applied, including doing extrapolation of the timeseries’ and then calculating the features
following this.

A possible new direction for research would be to investigate whether the angle based measure can be used to
remove features/neurons that are capturing unwanted relationships. In the case of this experiment, it would be
those that cause signals coming from the same entity which have a higher likely hood of being classed together,
even if one signal is in response to a real smile and the other is in response to a posed one.

It would also be worthwhile investigating whether an ensemble of the ANNs and CNNs produced in this paper
could be used as an ensemble classifier.

We also note that in the case of the InceptionTime model, the calculated hyperparameter for depth was the
largest value our resources would allow. It would be worth repeating this hyperparameter selection with a wider
range of options for the depth parameter and produce new results with the new value for depth.
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9 Appendix

Fig. 9. The average pupil dilation for each observer when observing fake and real smiles.
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Fig. 10. Feature analysis for average results each observer when observing Fake and Real smiles.
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Fig. 11. Timeseries data for Pupillary responses to Real and Fake smilers for all participants
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Fig. 12. Chosen CNN architecture
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Fig. 13. Chosen InceptionTime architecture
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