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Abstract. Virtual reality devices have taken enormous strides in recent years, with many new interface features  
becoming commonplace in consumer-level devices. This paper investigates the potential of four neural architectures 
for classifying EEG data, using  a single EEG tracking point, to determine the plausibility of introducing low-cost 
EEG hardware interfaces into new VR HMDs. Consideration is given to the quality of classification from both raw 
data, and statistically computed features. Throughout this investigation, dynamic auto-constructive architectures, such 
as the Cascade Correlation architecture, are found to be highly effective at classification when statistical features are  
used  as  input.  Neural  features,  as  generated  by  an  LSTM,  are  found  to  be  more  accurately  classified  for  all  
architectures,  but  achieve  best  classification  with  a  simple  feedforward  network.  This  work  demonstrates  the  
incredible potential of low-overhead neural models at working with low-cost EEG hardware, and that this technology 
has considerable potential in consumer-level devices.
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1   Introduction

Modern interface devices are consistently evolving with many new features integrated into each successive generation. 
Along with these improvements often comes a reduction in size and weight, which occasionally yields a simplification 
of hardware. In the case of Virtual Reality hardware, simple, but effective electroencephalography (EEG) hardware  
integrated into consumer level devices could yield incredible potential for  the fields of both gaming [7, 10] and medical 
rehabilitation [6, 8, 9].

However, despite this potential, most EEG-based systems rely on many EEG points [1, 6, 7, 9, 10], which dramatically 
increases  the  price  and  computational  complexity  of  implementing  a  brain-computer  interface  (BCI),  beyond  that 
acceptable  for  consumer-level  hardware.  These  costs  could  be  brought  down drastically  if  new  models  could  be 
developed to function with a minimal number of EEG data points.

To this end, this paper aims to investigate various simple neural models for the task of music genre classification, in a 
similar vein to previous works [1, 8, 9], but making use of only a single EEG point. Although this task may not see 
significant use in most consumer-level VR BCIs, it functions effectively as a proof-of-concept for the use of neural 
models to process reduced EEG signals.

This paper explores the use of four different models on an EEG timeseries dataset [1]. The dataset provides band power 
values  computed at  periodic  steps  from 128Hz EEG data,  collected  from 14 points  on the head.  The use  of  raw 
timeseries power values allows for both statistical features, and neural features to be be experimented with throughout  
training. Furthermore, due to the separation of the data by point, features specific to certain areas of the brain can be  
used easily to demonstrate the models’ efficacy with only a single EEG point.

The four types of models explored in this work include a feedforward shallow neural network, a Cascade Correlation 
network [3], a Local Feature Constructive Cascade network [2] and a convolutional neural network. Each network has  
two variants, once which uses fixed statistical features, as in the original paper [1], and a second which makes use of a 
simple bidirectional LSTM model to process the values into neural feature vectors. For fixed statistical inputs,  auto-
constructive  cascade  models  were  found  to  far  outperform  the  fixed  structure  models,  yet  feedforward  networks 
performed vastly better when neural features were used, as shown in Section 3.

2   Method

2.1   Data Set

The dataset used is a modified subset of that originally developed by Rahman et al. [1]. The full dataset consists of a  
timeseries of power values, collected into 8 bands, from a total of 14 points on each of the 24 subjects’ heads. Each  
subject listened to 8 songs total, 4 from each of 2 categories. This yielded a dataset with a total of 2,688 timeseries 
vectors. Although the original dataset contained raw EEG values, the paper also makes use of 26 statistical feature  
values for classification [1], of which a subset is taken as input to the classifiers.



For this task, a subset of the original dataset was taken, consisting only of data from the F7 EEG point, located on the 
far left side of the subject’s frontal lobe. According to the results by Rahman et al. [1], data from this point, alongside 
F3, was found to have the greatest correlation with accurate classification results. Data from this point alone is used for  
both the neural feature networks, and for the statistical feature networks.

Some minor transformations were applied to the dataset, including both the statistical features, and the raw timeseries  
values. Two features, the Absolute Summation, and the Summation, were found to have the same value for all entries in  
the dataset. To reduce redundancy, the Summation feature was removed. Additionally, the Simple Squared Integral and 
Absolute Summation features were found to often have values that far exceeded those of the other features. To improve  
convergence performance, these features were converted to the square root of their original values. Lastly, all feature  
vectors were normalised to ensure that no large outlying features would flood the inputs.

With these changes, the final list of features for the new subset is listed in Table 1.

Table 1.  List of features taken as a subset from the original dataset.

Type Names

Linear

Mean, Maximum, Minimum, Standard Deviation, Interquartile Range, Root of 
the Absolute Sum, Variance, Skewness, Kurtosis, Root Mean Square, Average of 
the power of signals, Peaks in Periodic Signals, Integrated Signals, Root of the 
Simple Square Integral,  Means of  the absolute  values of the first  and second 
differences,  Log  Detector,  Average  Amplitude  Change,  Difference  Absolute 
Standard Deviation Value 

Non-Linear
Detrended  Fluctuation  Analysis,  Approximate  Entropy,  Fuzzy  Entropy, 
Shannon’s Entropy, Permutation Entropy, Hjorth Parameters, Hurst Exponent

The data input for the networks differs depending on whether neural features or statistical features are to be used for 
that particular network. For the neural feature variants, all four networks have the same input format, consisting of a 
timeseries vector of vectors, each of length 8. This yields a matrix, seq_lenx8 in size, where seq_len is the length of the 
timeseries  sequence.  The LSTM encoder  uses this matrix to calculate  features  which then match the shape of the 
expected statistical feature inputs for that network.

For the statistical feature networks, the data input for each varies slightly, but still results in the same data being input  
overall. For the CasCor and feedforward networks, which make use of 1D input vectors, the three bands of features are 
reshaped into a single vector of 72 values, and are concatenated to the one-hot subject vector, which provides a single  
input vector of 96 values total.

Since both the convolutional network and the LoCC process the data as a 2D grid, the data is passed in as a 48x3 vector,  
with the one-hot subject vector concatenated to each of the three 24 feature vectors. Within each of those networks, the 
repeated  subject  vectors  are  split  from the  tensor  and  processed  separately,  so  as  not  to  cause  confusion  in  the  
convolution filter patterns, which aim to process the features only.

2.2   Neural Model Structures

As previously mentioned,  this  paper aims to  explore the efficacy  of four  classes  of  neural  models as  methods of  
classifying music genres. Each of these models is implemented simplistically, since the goal is to generate lightweight  
models if possible. For all of the following models and structures, the tanh activation function is used.

Feedforward Neural Network. The first of the four models is the traditional feedforward neural network. This model 
consists of a number of inputs, which utilise a chain of linear matrix multiplications to transform the inputs into a 
number of outputs. For complex tasks, activation functions can be used to introduce non-linearity between the inputs  
and outputs, and allow for more complex functions to be represented.

For this classification task, two slightly different structures were used. The first of these utilises a bidirectional LSTM to 
process  the raw timeseries  values,  and passes  the calculated features  into a  single-layer  feedforward  network.  The 
feedforward section consists of 48 inputs, a single hidden layer of 10 nodes, and 3 outputs nodes, loosely based on the  
structure used by Haggblade et  al.  [4].  Activation was applied to the outputs of only the middle hidden layer.  As  
mentioned, the LSTM consists of a bidirectional LSTM, with an input size of 8 (to match the timeseries element vector  
length), and a hidden state size  of 24 (which yields an output containing 48 features).

The second structure only takes in the statistical features of the EEG data, and so forsakes the LSTM encoder in favour  
of a slightly larger input layer. In particular, the second network variant consists of 96 inputs, a single hidden layer of  
10 nodes, and 3 output nodes. As with the first structure, activation was applied to the outputs of the middle hidden 
layer only.



Convolutional  Neural  Network.  Convolutional  neural  networks are  widely regarded  for  their  ability to  recognise 
patterns within multidimensional data. The dataset makes use of three bands of data, each containing multiple features.  
It is thus presumed that a convolutional neural network is expected to provide equal or greater performance than the 
feedforward networks described above, whilst requiring fewer parameters  and less computational power due to the 
sparsity of filters.

To test this hypothesis, two structures were proposed for the convolutional models, with each structure having two 
variants depending on the input data used. The first of these is a network based on 1D convolutional filters, operating  
over the three bands as input channels to the network. Two layers are used, the first with 3 input channels, 12 output 
channels, a filter length of 6, and stride of 2. The second layer uses the same filter sizes and stride, with 12 input  
channels, and 36 output channels. Each of these convolution layers is proceeded by an activation layer. To classify the 
output, average pooling, followed by a two layer feedforward network is used to map the features of the convolution  
filters into 3 output classes. This network structure is used directly to process the statistical feature matrices as described 
in Section 2.1, but is also used as a backbone for a second network variant which uses an LSTM encoder to encode  
timeseries data into a feature matrix, which is then passed through the same convolutional filters. This LSTM encoder is 
identical to that used by the feedforward network above.

The second structure considers the input data as a single channel set of 2D data (rather than multi-channel 1D data), and  
to this end uses a similar structure, but with 2D filters replacing the 1D filters of the previous structure. The first of the  
two layers uses a 6x2 filter, with a stride of 2x1, padding of 0x1, with 1 input channel, and 4 output channels. The  
second uses the same size filter and stride, removes all padding, and has 4 input channels, to 12 output channels. As  
with the first structure, activations follow each convolutional layer, as well as an average pooling layer, although only 
on the x-dimension of the data. This all feeds into a two-layer feedforward network of the same layout as with the first  
model structure. Just as with the first CNN structure, this structure also is used for two variants, one using an LSTM 
encoder, and one which takes the statistical features directly.

Cascade  Correlation  Neural  Network.  The  Cascade  Correlation  learning  architecture,  originally  described  by 
Fahlman [3], offers an effective means of generating neural network structures at training time to efficiently satisfy the  
problem function. As a neural model, a simple CasCor model will differ with each run, but uses fixed blocks from  
which  to  generate  the  complete  structure  of  the  final  model.  For  this  task,  much  of  the  network  architecture  is 
implemented as in the original paper.

Following the process laid out by Fahlman [3], the CasCor model begins with 72 feature inputs, and 24 one-hot subject  
inputs. These inputs are connected to the 3 outputs through a fully connected weight layer, with no initial hidden layers.  
As the network structure is built up, hidden cascade units are added, each of which connects to the 96 inputs, as well as  
all prior hidden units. Additionally, each hidden cascade unit has an activation function applied to it’s output value  
before it is connected to the 3 outputs or to subsequent hidden units. This allows for each hidden unit to form a simple  
feature detector, and to recognise both linear and non-linear features in the data, or in the prior detected features, ideally 
yielding an effective network layout for classification of the EEG data.

Just  as  with the CNN and feedforward networks,  a second variant  which makes use of an LSTM encoder  is  also  
implemented to test the efficacy of neural features vs statistical features. Since the outputs of the LSTM do not include  
an explicit  subject  encoding, this second CasCor model is only instantiated with 72 feature inputs,  connected to 3 
outputs. Aside from the inclusion of the LSTM and the number of inputs, all other details remain the same as the  
statistical feature CasCor model.

Local  Feature  Constructive Cascade.  Extending the Cascade  Correlation  model  outlined above,  a Local  Feature 
Constructive  Cascade  network  [2]  is  also  investigated  as  a  potential  classification  model.  As  with  the  Cascade 
Correlation model,  this is a self-constructing neural  network that  is  built  at training time, rather  than using a pre-
specified layout. As such, the exact structure differs slightly with each run. However, the cascade and hidden layers 
used remain fixed. Similarly to the CasCor, this network architecture has two variants, though the underlying the LoCC 
structure is identical, with the only difference being the inclusion of the LSTM encoder for one of the two variants.

It’s important to note that unlike the original paper’s task, the 2D input to this network forms a very short but wide 
shape, and cannot be easily padded to a square. Thus, to account for this, the hidden layer has been reshaped to an 8x3  
layer of neurons, rather than an 8x8 as used in the paper [2], and the input layer is formed as a 24x3 grid of inputs,  
rather than the 32x32 grid of the paper. The cascade layer dimensions remain the same.

To account for these changes to the hidden and input layers, different sizes of convolution filters (or “receptive fields”) 
can be used to feed the neurons of the cascade and hidden layers.  In particular,  this classification model uses 4x1 
rectangles to feed the hidden layer neurons from the input layer, with a stride of 3x1, meaning no rows overlap, and 1  
column overlaps with each step of the filter.

For the cascade layers, a 8x2 filter with a stride of 5x1 takes values from the input layer, whilst a 3x2 filter with a stride  
of 2x1 takes values from the hidden layer. Both cascade layer filters use a single row of zero padding, with the hidden  
layer also padding an additional column with zeros. As with the original paper, each cascade layer has a one-to-one  
weighted connection with each previous cascade layer [2].

In order to aid with the non-linearity of the model, activation is applied to the output of the hidden layer values, and to  
each cascade layer’s output.



2.3   Training Methodology

The training methods used for all four networks are largely identical. K-fold cross validation is used on the dataset, with 
a K value of 6 chosen to offer a good balance between training and test set sizes. All weights for all networks are  
initialised in the respective default manner as implemented by the PyTorch library, and are backpropagated using the  
autograd library included with PyTorch.

All networks, including the candidate cascade nodes and layers, are trained using RPROP, as in the original paper [2],  
as  it  was  found  from informal  experimentation  to  yield  the  best  classification  results.  The  RPROP optimisation  
algorithm begins with the default learning rate as specified in the PyTorch library.

For each K-fold model, the feedforward and convolutional networks are trained for 100 epochs, with a learning rate 
scheduler  halving the learning rate  every 30 epochs.  Similarly,  the CasCor and LoCC models  are trained for  100 
epochs, before adding a new node or layer. The candidate layer/node is trained for 200 epochs before being added, after  
which the entire model is again trained for 100 epochs. This repeats until the accuracy no longer improves, or until the 
network consists of 20 cascade nodes/layers.

For all training, cross-entropy loss is used, to ensure that the loss function accurately matches the classification task 
being trained for. All networks finish with 3 outputs, one for each genre of music that can be classified for.

Lastly, for the feedforward and convolutional networks, dropout layers [5] are used after each activation to reduce the 
overfitting which is common for such small datasets as is used here.

3   Results and Discussion

As outlined in Section 2.3, all models are trained using 6-fold cross validation, with four metrics of performance used:

• Accuracy (Percentage of correctly classified inputs)
• Precision (Fraction of the predicted labels matched)
• Recall (True Positive Rate)
• F-measure (Harmonic mean of Precision and Recall)

These four metrics of performance are derived from those used in the original dataset paper [1], and are used to allow  
for these results to be directly compared to those achieved with the full dataset.

The feedforward and convolutional network results are reported based on the best of five runs, whilst the CasCor and 
LoCC networks  are  each  run  10  times,  with  the  best  performing  metrics  recorded  for  each.  The results  of  these  
experiments are recorded in Table 2, and included alongside the results of the original dataset [1].

Table  2.  Performance metrics of the four models, and the original dataset paper’s NN model. Higher is better, best  
scores in bold.

Model Variant Accuracy Precision Recall F-measure

Feedforward

96-10-a-3 0.4531 0.4688 0.4403 0.4541

LSTM
48-10-a-3

0.5936 0.6087 0.6424 0.6251

CNN

1D Filters 0.2865 0.2981 0.2813 0.2895

1D Filters w/ 
LSTM

0.5885 0.5816 0.5752 0.5784

2D Filters 0.3490 0.3639 0.3549 0.3593

2D Filters w/ 
LSTM

0.5990 0.6142 0.5950 0.6045

CasCor CasCor 0.5417 0.5398 0.5695 0.5543

CasCor w/ LSTM 0.5625 0.5696 0.5736 0.5716

LoCC LoCC 0.4844 0.4958 0.4614 0.4780

LoCC w/ LSTM 0.5208 0.5546 0.5749 0.5646

RSFS NN [1] 0.9755 0.9615 0.9633 0.9624



Based on the above results, it is immediately apparent that the neural features generated by the LSTM encoder are far  
superior at producing meaningful classification than the statistical features manually generated from the same data. For 
all four architectures, the LSTM variants outperform the base version, some by more than others. In particular,  the  
feedforward and CNN networks experience a significant improvement, of up to 30% gain in accuracy. It is likely that 
the improvement  for the CNNs stems from the fact  that  the LSTM is able to be trained to generate features  with  
meaningful positional information for the CNN, rather than simply stacks or channels of statistical features. This allows 
the CNN to make better use of the extracted features, dramatically improving performance.

The  feedforward  and  2D CNN match  very  closely  in  all  metrics,  with  the  CNN outperforming  in  accuracy  and 
precision, and the feedforward excelling with recall and F-measure. Given the slight edge in computational performance  
from the feedforward, it  is likely more suitable to use in virtual reality systems than the 2D CNN, although either 
network would be well suited.

Despite  the excellent  perfomance  from networks  using  neural  feature  encoders,  the  networks  making use of  only 
statistical features still struggle, aside from the auto-constructive networks. The convolutional networks in particular 
have incredibly poor performance, performing worse than random chance in the case of the 1D filter variant. The use of 
2D filters slightly improves the performance above randomness, but is still vastly outmatched by all other models. The  
feedforward statistical networks perform better, but still do not match the CasCor and LoCC models.

Of the two auto-constructive cascade networks, the CasCor network performs the best in all metrics. This matches the  
results of the pattern from the feedforward and convolutional statistical networks, indicating that the data inputs used  
are not well suited to analysis over dimensional space, and thus perform poorly with convolutional networks. Since 
LoCC makes heavy use of convolution filters [2], this yields poor performance compared to the individual cascade units 
of the CasCor network.

4   Conclusion and Future Work

This paper has investigated four different neural architectures as potential options for the classification of music genres  
based on EEG features. Each model was trained to classify music into one of three genres based on only a single EEG 
point,  with  a  variant  operating  on  the  raw data,  as  well  as  statistical  features.  This  work  was  used  as  an  initial  
experiment to determine the potential suitability for small-scale EEG hardware in consumer-level products to work as a  
BCI interface, in such fields as gaming and medicine. Through this testing, it was found that small-scale feedforward 
networks,  and in particular  auto-constructive  cascade  networks,  such as  in Fahlman’s  work [3],  were  best  able to 
classify  the  EEG  features,  and  thus  have  considerable  potential  for  future  development  alongside  low-cost  EEG 
hardware. Furthermore, the use of LSTM encoders on raw EEG data was found to offer significant improvement to 
classification accuracy, at a cost of computational throughput.

This work demonstrates that through neural models, great improvements can be made in the processing of signals from 
small and cheap hardware, and thus introduces multiple new prospects for future work, including:

• Emotional classification with minimal points, to allow for procedural modification to video games according to 
a player’s emotion, or potentially for automatic gameplay feedback telemetry.

• General movement prediction, potentially allowing for optimisations in video game rendering, or as part of 
lower cost EEG-based artificial limbs.

• Mental sentiment detection, which could grant video games the ability to determine intent behind actions, and 
integrate this into assistance or training sub-systems.

It’s important to note that although this work introduces the potential for neural processing of reduced EEG signals,  
many more developments are necessary to ensure that this technology would be satisfactorily capable, especially in 
medical rehabilitation. In particular, this work relies on either expensive sequential LSTM neural processing of high 
resolution  signals,  or  generalised  statistical  analysis.  Further  work  could  be  done to  investigate  the  suitability  of  
different models to generate neural features, which could yield more suitable features, or produce similar results, with 
far less overhead.

Nevertheless, this study demonstrates that with the right computational models, low-cost EEG hardware has significant  
potential for future growth and use in consumer-grade devices and use-cases.
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