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Abstract. With the development of technology, the quality of people's daily life is also improving. In recent years, 
the emergence of the concept of "smart cities" has had a positive impact on people's daily life [1]. One of the most 
important parts of a "smart city" is an intelligent transportation system, and the successful identification of different 
types of vehicles through images captured by urban traffic cameras is the basis of an intelligent transportation system. 
In this paper, two approaches are chosen to achieve the classification task of various vehicles, the first one is the 
residual network based on deep CNN, especially we use ResNet50. And the second one is based on ResNet50 with an 
additional hidden layer constructed by Casper between the final fully connected layer and the output layer of the 
model. Both methods are tested separately on the vehicle-X dataset, which contains 1362 different vehicle classes. 
The experimental results show that the ResNet-50 with Casper could slightly improve the performance. And SGD 
(with momentum) is actually more suitable than RMSprop to deal with the images. 
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1   Introduction 

With the popularity of smart cities and their related concepts, attention is gradually being focused on their subsystems 
intelligent transportation systems and autonomous driving. For intelligent transportation systems, its sub-tasks include 
but are not limited to reasonable monitoring of road conditions, identifying vehicles violating traffic laws, and planning 
traffic flow. And most of the sub-tasks related to intelligent transportation systems have high requirements for vehicle 
monitoring and classification. 
  The cornerstone of machine learning is data, and the quality of the data will determine how well the algorithm 
performs. A suitable dataset is crucial for training models. Our goal is to apply the vehicle multi-classification model to 
real-world scenarios. Real data will be the best choice, since the data collected in the real world is not always taken in a 
well-lit environment, and it may be affected by the viewing angle and shooting distance. However, it is often expensive 
to collect and label real-world data. The dataset chosen for this paper, Vehicle-x, is a large-scale dataset consisting of 
synthetic data constructed by the graphics engine Unity, which contains 1362 vehicles in various 3D models with fully 
editable attributes. In theory, it can generate an infinite number of images of different vehicles by modifying the 
relevant construction parameters. These editable parameters include many factors, such as light intensity, light direction, 
camera distance, etc., which can simulate the real data to a certain extent. It has been validated that pre-training on 
Vehicle-X or combining it with real-world data can improve the performance of the relevant models on real test data 
sets [2]. 
  The task proposed in this paper is based on vehicle-X dataset and classifies 1362 3D-vehicles among them. By 
learning the image features of different vehicles, the deep learning model will perform the prediction of vehicle types 
based on the unseen images. For this multi-classification task, two CNN models are used. The first one is residual 
network based on deep CNN [3], which has had a landmark impact on deep learning for image recognition. Specifically, 
we chose ResNet50, a detailed discussion can be found in Section 2.1. The second one is based on ResNet50 with an 
additional hidden layer between the fully connected layer and the output layer, which is constructed by Cascade 
Network with Progressive RPROP (Casper) [4], an algorithm that automatically tries to add hidden neurons between the 
input and output layers. We test both models on Vehicle-X dataset and perform a reasonable hyperparameter tuning. 
Based on the final results, we can conclude that the ResNet-50 with Casper (with SGD) is slightly better than the 
ResNet-50. And accidentally, we find that the SGD (with momentum) is more suitable than RMSprop to deal with 
images. 
   

2   Methods 

 
In this section, we will introduce two methods we used separately in detail. The first one is residual deep network, 
specifically, we choose ResNet-50. Since ResNet-50 is a typical residual deep network that uses the least number of 
layers and consists of bottleneck residual blocks, which could significantly reduce the number of parameters. [3]. The 
other one is a combination of ResNet-50 and a hidden layer that constructed by Casper algorithm. 

 



2.1   Residual Deep Network (RseNet-50)  

The depth of the network is crucial for the model. Generally, deeper networks can extract more complex features [11]. 
However, deeper networks may not perform better. The experimental results show that the deep network may have a 
Degradation problem: when the network depth increases, the accuracy of the network becomes saturated or even 
decreases [3]. The proposal of residual deep network (ResNet) solves this problem to a large extent. ResNet is a deep 
learning network composed of a series of residual blocks. A residual block can be mathematically expressed as Eqn.1, 
where  denotes the vectors that considered by layer  and  can denote multiple convolutional 
layers. Fig.1 illustrates the architecture of a standard residual block. 
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Fig. 1. A standard residual block (left) and a “bottleneck” residual block (right) [3].  

 
As shown in Fig.1, residual block consists of two main parts, the identity mapping x (a.k.a. shortcut connection) and the 
normal convolutional mapping F(x). The F(x) is generally composed of two to three convolution layers, which is 
denoted as “weight layer” in the Fig.1. There are only two convolution layers are shown in the Fig.1 left. For the 
ResNet-50 we use, the normal convolutional part of each Residual block contains three convolution layers, which is 
shown in Fig.1 right. The residual block used in ResNet-50 is called a "bottleneck" residual block. At the end of each 
residual block, there is an element-wise addition operation, which means adding the normal convolution part and the the 
identity mapping part. However, in a convolutional neural network, the number of channels of  and  may be 
different. Therefore, we need to upgrade or reduce the dimensionality of the identity mapping part before the addition 
operation. Generally, 1´1 convolution kernel is used to change the number of dimensions. Note that the last ReLU 
activation function of the residual block is after the addition operation. In addition, the Batch Norm is used to control 
the problem of gradient explosion/gradient vanishing. The more detailed version of architecture of “bottleneck” residual 
block can be found in the Fig.2. And the “bottleneck” residual block with 1´1 convolution shortcut can be 
mathematically denoted as Eqn.2, where  is the vector with 1´1 convolutional operation. 
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Fig. 2. Architecture of a “bottleneck” residual block.  
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The standard residual block and “bottleneck” residual block are discussed above. And the entire ResNet-50 consists of a 
series of “bottleneck” residual blocks. The architecture of entire ResNet-50 can be found in Fig.3. Each block with 
annotation “´m” in Fig.3 can be considered as “m” connected “bottleneck” residual blocks. There are some classical 
residual networks such as ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-153. The detail can be found in 
Table.1. First two models use the standard residual blocks, and rest models use the “bottleneck” residual block since it 
actually requires significant less parameters, which require less memory space and the computing resources. ResNet-50 
is the classical model that consists of “bottleneck” residual block but with least total layers, and that is why we choose 
ResNet-50 as our first model. 
 
 
 
 

 
Fig. 3. Architecture of the ResNet-50. 

 
 
 
 
 
 
 
 
 
 
 

Table 1. Architectures for different Residual Networks [3]. 
 
 
 
 
 
 



2.2   Residual Deep Network with Casper (ResNet50-Casper) 

The second model is based on ResNet50 with an additional hidden layer between the fully connected layer and the 
output layer, which is constructed by Cascade Network with Progressive RPROP (Casper) [4]. The architecture for the 
first part of the ResNet50-Casper is same as the previous mentioned ResNet-50, and this section will focus on the 
Casper algorithm. The full architecture of ResNet50-Casper can be found in Fig.4.  
 

 

 
Fig. 4. Architecture of the ResNet50-Casper. And for Casper part, it demonstrates the topology that after adding second 

hidden neuron. 
 

 
 
 
The Cascade Correlation (Cascor) algorithm was proposed by Fahlman and Lebiere in 1990. It can automatically 
construct a network structure [5]. The algorithm contains the following steps: 

1. The network is initialized by directly full connecting all the input features to the output layer, which means 
there is no hidden neurons at the first step.  

2. Then it will add one single hidden neuron while freezing the weights of all previous neurons.  
3. The network will train the new hidden neuron with the output layer. 
4. Repeat the step 2-3 until it converges or meets some specific conditions. 

 
 
 
The Cascor algorithm is very efficient since every hidden neuron only needs to be calculated once [4]. However, the 
algorithm could lead the entire network to be extremely large since it freezes the weight of neurons [6].  
 
To overcome the shortcomings of the Cascor algorithm, a new algorithm called Casper was proposed by Treadgold and 
Gedeon in 1997 [4]. The Casper algorithm uses the similar idea of the Cascor, but unlike Cascor, Casper takes a 
different strategy to deal with the weights of existing hidden neurons. The whole network can be divided into three 
different regions, and each region has its own learning rate. The definition of each region and the corresponding 
learning rate can be found as followed: 
 

1. Region 1: weights that connected from previous hidden neurons and input features to new hidden neuron. The 
corresponding learning rate can be denoted as L1. 

2. Region 2: weights that connected from new hidden neuron to the output layer. The corresponding learning rate 
can be denoted as L2. 

3. Region 3: weights that for all the other connections. The corresponding learning rate can be denoted as L3. 
 
 
 
And the relationship between L1, L2 and L3 can be denoted as L1>>L2>L3. In addition, Casper also uses weight decay 
to improve the generalization ability. Specifically, Casper uses the modified version of Rprop algorithm [7]. We choose 
to use the RMSprop algorithm [8] to replace the original Rprop algorithm since Rprop algorithm is not suitable for 
mini-batch training. And we use mini-batch training since the dataset is relatively large. Therefore, the RMSprop 
algorithm is more suitable for our situation. 

As for the termination condition, the network will terminate if the training process fails to reduce a certain amount of 
loss in the next 15+P´N epochs, where P is a self-defined hyperparameter and N is the number of all the neurons in the 
network.  
 

 
 



3   Experiments and Discussion 

In this section, we make experiments for both ResNet-50 model and ResNet50-Casper model on vehicle-X dataset and 
evaluate their performance. We first introduce the dataset, the data preprocessing and the evaluation metrics we used, 
and then we describe the hyperparameter tuning process. Finally, the two models are compared and discussed based on 
the relatively optimal combination of hyperparameters that we derived. Note that this experiment utilizes cloud-based 
GPU computing resources, GeForce RTX 2080 Ti and Tesla V100-SXM2-16GB. 
 
 
 
 
3.1   Dataset 
 
Since the cost of collecting and labeling a large amount of real-world data is very expensive, the data used in this 
experiment are all derived from the vehicle-X dataset. The data in the dataset is synthesized by the image engine Unity, 
which provides convenience and flexibility for the research of computer vision field. It contains a total of 1362 vehicles 
in various 3D models with fully editable attributes. And by modifying the relevant parameters, theoretically unlimited 
images can be generated. However, this article only uses the original images of 1362 different vehicles in the dataset. 

 
 
 
3.2   Data Pre-processing 
 
 
The entire vehicle-X dataset is divided into training set, validation set and test set, which contain 45438, 14936 and 
15142 images respectively, and the ratio of the number of images they contain is about 3:1:1. Before starting the 
training, the size of each image is resized from 256*256*3 to 64*64*3. Since 64 is a relative appropriate size, it can 
improve the training speed, reduce the demand on computing resources, and it will not lose too much information of the 
original images. 
  During the training of a neural network, especially when training on a large dataset, the training speed can be 
improved by normalization. For unnormalized input features, the gradient descent algorithm may require more 
iterations to find a minimum, and it usually uses a small learning rate. However, for normalized input features, the 
gradient descent algorithm is able to find the minimum more directly, regardless of the position where it starts. 
Therefore, a larger learning rate can be used in the gradient descent algorithm to speed up the training process. The 
formula of normalization can be found in Eqn.3, where it normalizes the input image channel by channel. We choose 
the mean = [0.485,0.456,0.406] and std = [0.229, 0.224, 0.225] for RGB channel. The value of mean and std are coming 
from random sampling from the ImageNet. 
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3.3 Evaluation Metrics  

We use two different metrics to evaluate the performance of network. The first one is accuracy. Accuracy is the ratio 
between correct prediction samples and the total samples. The second one is mAP (mean average precision) [9], which 
can balance the relationship between precision and recall. 

 

3.4 Hyperparameter tuning for ResNet-50  
 
The hyperparameters for ResNet-50 are batch size, number of epochs and learning rate. We initially set the number of 
epochs to be 70, size of the mini batch to be 64 and the learning rate to be 0.1 base on our empirical experience. And we 
also set an adjusting strategy that changes the learning rate with the training process. Given a metric (loss), when the 
process stops to optimize, the learning rate will be adjusted by becoming the one tenth of the current learning rate. 
Specifically, if the metric (loss) is greater than the value of best metric (lowest loss) ´ (1-1e-4) for five consecutive 
epochs, then the current learning rate will be updated by Eqn.4. In addition, the minimal learning rate is set to 1e-5. 
 

, where  (4) 

 

out put[ch annel ] = input[ch annel ] − mean[ch annel ]
std [ch annel ]

lrnew = lrold × λ λ = 0.1



 
As you can see in the Fig.5, the loss of both of training set and validation set are becoming very low before the 50th 
epoch. That indicates the training process converge before the 50th epoch. Therefore, we adjust the number of epochs to 
50. And base on that, we test and compare different size of the mini-batch and different initial learning rate. The results 
of comparison can be found in Table 2 and Table 3. Therefore, we finally choose the number of epochs to be 50, size of 
the mini batch to be 64 and the learning rate to be 0.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. The visualization of training loss and validation loss over 70 epochs. Size of mini batch is 64, initial learning rate 

is 0.1, optimizer is SGD. 
 
 
 
 
 
 
 
 
 
 

Table 2. Comparison of different size of mini batch over 50 epochs. 
 
 
 
 
 
 
 
 
 

Table 3. Comparison of different initial learning rate over 50 epochs. 
 
 
 

3.5 Hyperparameter tuning for ResNetCasper-50  
 
Firstly, we try to use the same adjusting strategy for learning rate as we used in ResNet-50. The optimizer for CNN is 
SGD and the optimizer for Casper is RMSprop. Ans we also choose the size of mini batch to be 64 and the initial 
learning rate to be 0.01. To make sure the network can converge, we initially set the number of epochs to be 200. In this 
case, the network converges at the 99th epoch with three hidden neurons in the Casper layer. The loss of training set and 
validation set are visualized in the Fig.6. We found that the loss will rocket to a very high level every time the new 
hidden neuron was added. And the validation set loss at the final convergence (with three hidden neurons) is actually 
higher than the loss when there is only one hidden neuron, which indicates the fact that the training process actually 
meet negative optimization.  
  After careful observation and analysis, we propose a hypothesis that the previous learning rate update strategy is not 
suitable in this case. After the first hidden neuron is added, learning rate starts to change with the update strategy, but 
this update strategy will make learning rate monotonically decrease. Therefore, after the second hidden neuron is added, 
the learning rate will always be trained with the updated value (the value of learning rate is usually the lower bound in 
the update policy, in this case it is 1e-5). As shown in the Fig.6, each addition of a neuron results in a very high loss. In 
this case, training with a very small learning rate can lead to a very slow training process and it is very easy to fall into a 
local optimum. 
  Based on the proposed hypothesis, we try to change the learning rate update strategy and increase the lower bound of 
learning rate in order to train the model with a not too small learning rate even after the addition of hidden neurons, so 
that it would not easily fall into a local optimum solution. We tried several different combinations of learning rates, 

Size of mini batch  mAP on test set (%) 
32 82.24 
64 93.09 
128 
256 

92.02 
90.30 

Initial learning rate  mAP on test set (%) 
0.1 93.09 
0.05 
0.01 

92.88 
92.20 



which contain different initial learning rates and different lower bounds. The results can be found in Table 4. We can 
notice that the higher lower bound of learning rate could lead a better performance. However, there is still a significant 
difference between the ResNet-50 and the ResNet50-Casper. 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
 
 
 
Fig. 6. The visualization of training loss and validation loss over 99 epochs. Size of mini batch is 64, initial learning 

rate is 0.01, the CNN optimizer is SGD, and the Casper optimizer is RMSprop. 
 
 
 

 

 
 

 
 
 

Table 4. Comparison of different combinations of learning rates. For the update strategy of learning rate, each 
combination contains different initial learning rate and different lower bound. ResNet50-Casper with RMSprop. 

 
 
 
 
Since there is still a significant difference between the performance of ResNet-50 and ResNet50-Casper, we try to make 
some further adjustments on the ReNet50-Casper. Originally, we use SGD as optimizer for the CNN part of the 
ResNet50-Casper, and the layer that constructed by Casper uses the RMSprop as the optimizer, since the paper that 
proposed Casper suggested to use Rprop. We use RMSprop since the training process use the mini batch and Rprop 
cannot handle the mini batch training process. Now we try to replace the RMSprop in the layer that constructed by 
Casper with SGD optimizer. By comparing different combinations of the learning rate in the updates strategy, we obtain 
that the current best combination is initial learning rate with 0.1 and the lower bound is 0.001. The results of 
comparison can be found in Table 5. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Comparison of different combinations of learning rates. For the update strategy of learning rate, each 
combination contains different initial learning rate and different lower bound. ResNet50-Casper with SGD. 

 
 
 

Initial learning rate  Lower bound of 
learning rate 

mAP on test set (%) 

0.01 0.001 77.91 
0.01 0.0001 71.83 
0.01 
0.1 
0.1 
0.1 

0.00001 
0.001 
0.0001 
0.01 

72.81 
74.05 
74.17 
77.22 

Initial learning rate  Lower bound of 
learning rate 

mAP on test set (%) 

0.1 0.001 93.66 
0.01 0.001 91.49 



3.6   Results and Discussion 

 
Base on the previous discussion of the tuning hyperparameters, we compare the ResNet-50, the ResNet50-Casper (with 
RMSprop) and the ResNet50-Casper (with SGD). The final results can be found in the Table 6. And the results indicate 
that the performance of ResNet50-Casper (with SGD) is significantly better than that of the ResNet50-Casper (with 
RMSprop), which indicates that the SGD is actually more suitable to deal with images. RMSprop is an optimizer with 
adaptive learning rate, it is not good at finding the flat minima, which is an important factor to the generalization. 
Therefore, the training loss of RMSprop could be relatively low, but the test performance is worse than the SGD.  

In addition, the results indicate that the performance of ResNet50-Casper (SGD) is just slightly better than that of 
ResNet-50. The layer that constructed by Casper is between the final fully connected layer and the output layer. The 
input features for final fully connected layer is 2048 and the neurons for output layer is 1362. The number of weights 
between them could be very large, and the layer that constructed by Casper usually contains two or three hidden 
neurons. The two or three hidden neurons could only cause a slight influence on the entire deep network. Therefore, the 
performance of ResNet50-Casper is mainly based on the performance of the residual deep network. 

 
 
 
 

Model  mAP on test set 
ResNet-50 93.09 
ResNet50-Casper (RMSprop) 
ResNet50-Casper (SGD) 

77.91 
93.66 
 

Table 6. Comparison of different models. Note the RMSprop and SGD are only for the layer that constructed by 
Casper. 

 
 
 

 

4   Conclusion and Future Work 

 
We make experiments and test ResNet-50, the ResNet50-Casper (with SGD) and ResNet50-Casper (with RMSprop) on 
the vehicle-X dataset. Our goal is to do vehicle multi-classification base on the images of 1362 different vehicles in the 
dataset. We find that the performance of ResNet50-Casper (with SGD) is significantly better than that of ResNet50-
Casper (with RMSprop). We believe the SGD with momentum is more suitable than RMSprop to deal with images 
tasks. Since the RMSprop is an optimizer with adaptive learning rate, it can be easier to find the sharp minima, but it is 
not good at finding the flat minima. And flat minima are important to be considered that it has the generalization. In 
other words, the RMSprop could have lower training loss but usually end up with a worse test performance in image 
tasks. Besides, the performance of ResNet50-Casper (with SGD) has slightly improvement on that of ResNet-50. Since 
the hidden layer constructed by Casper end up with only two or three hidden neurons, and a few hidden neurons cannot 
have a lot influence on the whole deep network. However, training a model with Casper usually costs significant more 
time.  
  For the future work, the Transformer model [10] that used the self-attention mechanism perform a better performance 
than the normal CNN. It is a direction that we can try to optimize the Casper and try to apply the idea of it on the 
Transformer architecture. 
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