Can bio-signal better discriminate liars: A
Deception Recognizability Competition between
Statistical Models with Human Belief

Chen Luoyu

School of Computing, The Australian National University
u62149080anu.edu.au

Abstract. In an era with inundated fake and manipulated information,
helping people to recognize deceptive information can be very beneficial.
To help with deceptive recognition, this paper focuses on three tasks.
Firstly, build neural network models, by using bio-signal data to detect
the presence of manipulation. the second task is using Genetic algorithm
as feature selection techniques to remove unnecessary features, to obtain
a simpler and more effective model. However, due to complex architec-
ture of neural network, the output is hardly interpretable. Therefore, the
third task aims at extarcting rules to help understanding neural network
output, for potential use in bio-signal diagnostics. A three-layer fully
connected model can achieve prediction accuracy of 100%. A Multi-task
learning model can achieve prediction accuracy of 100%. Gradient sen-
sitivity rule extraction can achieve explanation accuracy 58% on Fully-
connected model and 54% on Multi-task Learning model.

Keywords: Belief Prediction - Artificial Neural Network - Multi-task
Learning - Genetic Algorithm - Rule Extraction: Gradient Sensitivity
Analysis.

1 Introduction

1.1 Background

When facing potential deceptions, there will be two sources to distinguish liar
and truth-teller: one is the cognitive recognition, it can either be an instant judge-
ment by intuition or careful reasoning. Another is the continuous bio-signal data,
which can capture subtle physiological changes while listening a speaker. When
people’s big-signal data are assessed, these data can generally better detect de-
ceptions than human cognition by detecting human doubts [2]. To evaluate the
research result, ’Subjective Belief’ experiment was conducted, presenters were
asked to deliver topics that some part are true while some part are deliberately
notified as bogus content. Then listener’s bio-signal data were recorded in the
total duration of listening. Therefore to effectively use bio-signal data to build a
liar detector, different Neural Network models are used, as they are good function
approximators to describe the relation between bio-signal data and presence of

2 Chen Luoyu

manipulation. And also, some of the bio-signal data may be useless or even dis-
ruptive in model prediction, Genetic algorithm is used to remove useless features
to improve prediction performance. Finally, because Neural Network model is a
multi-level nested function with vast number of weights in each nesting level, the
learned knowledge are represented by weights, which are uninterruptible for re-
searcher or experts in biomedical domain, who are trying to find exact conclusion
on which kind of bio-signal data is playing a vital rule in deception detection.
Thus, finding a good model output explain-er is urged in this case. This paper
uses Gradient Sensitivity Analysis method to perform rule extraction because
gradient is an indicator to reveal how much change of the output side will oc-
cur when the input side has a certain amount of change [1]. Overall, this paper
aims at showing bio-signal data can better predict the presence of doubts to
help people better discriminate liars and truth-tellers by using different Neural
network models, and optimize model performance by using Genetic algorithm to
omit useless features, finally use Gradient Sensitivity Analysis to extract rules
for model output prediction, as an explanation assistance to the complex pre-
dictor, to help researchers discover which features are decisive in detecting the
presence of doubts.

1.2 Bio-signal data

Research has shown that when listening lying speech, listeners can have lowered
skin temperature on their fingers (ST), greater galvanic skin response (GSR),
greater pupillary dilation (PD) and higher heart rate, and heart rate is alterna-
tively measured by blood volume pulse (BVP) [2]. Each class of these bio-signal
data came from continuous sensor record on each listener, and later the collected
data were smoothed and sampled.[2]

The data consists of 23 person’s bio-signal data, totally 368 records, with 16
records per person for different presenters and different topics. For each person,
BVP has 34 records, GSR has 23 records, ST has 23 records, PD has 39 records,
and the presence of manipulation was also recorded. Bio-signal data is in float
data type and presence of manipulation is in boolean type, 0 or 1.

1.3 The proposed tasks

The first task is to train Neural Network models, using bio-signal data as input,
and predict the presence of subjective belief manipulation on presenter’s side.
One model is a fully connected model with one hidden layer, another is a Multi-
task Learning model with three layers in the shared layer, and 23 personal layers
with one hidden layer.

The second task is to use Genetic algorithm as a feature space optimization,
by encoding feature set as binary array and fitness value as model prediction
accuracy, aim at learning a small set of feature to get a more compact model

Chen Luoyu 3

while keeping good predictability.

The third task is to perform rule extraction, use Gradient Sensitivity Analysis
to make a model explanation model, given input, it can predict model output.

2 Method

2.1 Data Pre-processing

First observe the raw data for BVP, GSR, ST, PD (see 1st row Fig.1). At some
moments of the entire listener’s experiment duration, high peaks exist, and all
the other moments are too dark because of the presence of theses peaks. Then
the time series data will become almost binary, with peak data =1 and non-
peak data =0, this may be destructive for model to extract useful information
from learning the time series trajectory. So I suppress these peaks first. Here 1D

Fig 1. Data preprocessing heatmap

BuP
200, 90

1

1

[2

[° %

03 6sRBBANTDR 024 6810124151802 0246 8WRIEBNR

B0

EElsans,

yEEEERE

15
b
15
2
=

N

Raw data after supression

BdesE,

R R,

"

024 6810121416180 0246 810121416182022

036SRBBANTDR

suppressed data after L2 normalization
GSR ST

BuP
o 0
p Sou 15
-016 %
: L %
&
et N
0% 180
138
26 L ¢
Z =
= 6
- 28 88
] 0023
5 | 000 %0 ke

03 69R5BAMITDR 024 6810121416180 0246 810121416182022

Gaussian filter with ¢ = 3 is selected to suppress these peaks while maintaining
fluctuation magnitudes. Then filter each kind of bio-signal data, for each partic-
ipants(see 2nd row Fig.1). And also, considering our participants are in different
ages, different genders or having different physiological properties, so I re-scale
the data for everyone’s bio-signal fluctuation in the same range. Here I select
L2-norm normalization to re-scale for each row data, do it four times as different
type of bio-signal data have different range for everyone. What’s more, L2-norm
normalization can compensate these overly suppressed fluctuations after Gaus-
sian smoothing at 1st step, to make signals have more manifest trajectory (see

4 Chen Luoyu

3rd row Fig.1).

However, our neural network model cannot handle time series data directly,
time series data is only a suitable input type for Recurrent Neural Network model
such as LSTM [6]. So I transform time series data into statistical quantities,
which can reveal the internal structure of the given time series data. There are
four kinds of bio-signal data so I compute statistical quantities for each, and a
summery of statistical quantities is shown below:

Table 1. Statistical quantities summary

Feature|Description
max maximum signal over time

min minimum signal over time

mean |average signal over time

std standard deviation of signals over time
var variance of signals over time

rms root mean square of signals over time

diff1 first order difference of signals over time
diff2 second order difference of signals over time

Thus I finally obtain data has size 368 * 32. Apart from that, after data
is processed and transformed, to prepare 5-fold cross-validation, I shuffle and
split for each participant’s data in ratio of 0.6:0.2:0.2 for train, validation, test
respectively , shuffle is to avoid positive, negative samples imbalance in train-
ing, validation, test data. And split data for each participant is to make sure in
Multi-task Learning model can learn task for each person in a balanced way.

2.2 3-layer Fully-connected model

Multiple settings of 3-layer fully connected structure are attempted, finally the
best model I obtained is a 32-5-2 structure model with Sigmoid activation layers
behind the input layer and the hidden layer, since the network is shallow, van-
ishing gradient issue is not a problem here. The optimizer chosen is Adam [5]
and loss function is cross-entropy loss as a smooth of prediction value. To avoid
over-fit, epoch is set to be 20 and learning rate is set to be 0.1.

2.3 Multi-task Learning model

The Multi-task Learning model consists of a shared layer and 23 task layers
(towers), after attempting multiple settings, the structure of 32-8 for shared
layer and 4-2 for task layer, Sigmoid activation layers are behind the input layer
and first layer of task layer. Optimizer and loss function are all the same with the
3-layer Fully-connected model. Epoch is set as 50 and learning rate is 0.1, longer

Chen Luoyu 5

training time is required as it is one layer deeper and more complex structure
than the Fully-connected model.

2.4 Genetic Algorithm

After making Neural Network model works finely, Genetic Algorithm is applied
for feature selection, in order to obtain a more compact and descent prediction
accuracy model. Both fully connected model and Multi-task Learning model are
optimized. I select fitness function as the % to encourage good accu-
racy and discourage large size of input to achieve descent predictability with
compactness. First I generate a large population with pop size = 100, set each
chromosome in the form of a binary array with length =32, initialize each entry
randomly with equal probability between 0, 1. In each iteration, set the mutation
rate as 0.1 and cross rate as 0.8. Then after 10 generations of searching, I obtain
the best model.

2.5 Rule Extraction via Gradient Sensitivity Analysis

After achieving a model with much less input (generally less than 10 features),
the final step is to make model explainable. The extracted rules are in the form
of

if X; < T;, then predict its class as: C;.

Here X is the ith attribute of pattern X, T; is the decision boundary, C; is the
rule prediction result. However, because we only have two classes, so a single
rule will be enough. However extracted rules may be predicting a pattern into
different classes, so instead of believing any one of the rule prediction, I use each
rule prediction as a vote, if positive class wins equal to or more than half of
votes, the ensembled rule prediction predict X as positive class.

The method to determine the decision boundary and predicting class comes
from analysis of gradients. Use the gradient for output w.r.t. inputs from the
final epoch of neural network model training. The boundary values is are ob-
tained from the input, so we have gradient matrix and input matrix in the form
shown below: (S is the last feature from the GA obtained compact model).

Gradient matrix G Input matrix A

Gip Gig ... Gis Ayg Ap . As
G2,1 G272 G275 A271 A2’2 AQ’S

G36s,1 G362 - - - Gzes,s Ases,1 Ases,2 - - . Ases,s

6 Chen Luoyu

Then T; should locate at input matrix column i row j, and j maximize the
gradient in the column i, which mathematically should be:

j = argmax G;;
1<5<S

and
Ti = Aij

To get the prediction class label Cj, it should come from lots of sampling at
the left side of decision boundary T;, and the sampling will be counting the fre-
quency of positive pattern label and negative pattern label (the label is coming
from model output). If positive pattern has greater frequency, then the predicted
class label should be 1, else 0. Also, considering model output maybe imbalanced,
so instead of comparing the frequency of positive output and negative output,
we compare the relative frequency, so if the at the left side of the boundary, the
frequency of positive output is Ficf:(1), and the population frequency (both left
and right) is Fo(1). If Fiepe(1) > Fou(1), we will believe positive pattern is rel-
atively more frequent at left side over the entire domain, and the rule prediction
label will be 1 in this case.

3 Results and Discussion

3.1 Neural Network performance

The validity of model results are highly sensitive to pattern class balanceness, to
ensure the results provided below are convincing, Fig 2. is the positive/negative
pattern distribution in test set: The test data is unseen at training phase and

Fig 2. Positive Negative pattern distribution

validation phase as it had been split out at the data pre-processing stage. 1
also performed identical checking to ensure no duplicates intersects training,
validation and test set. As we can see from Fig.2, the distribution of positive
negative pattern is perfectly half-half, with totally 92 testing patterns, 46 are
positive patterns and 46 are negative patterns. So the results displayed below
should be trustable.

Chen Luoyu 7

Table 2. Neural Network model evaluation

Feature accuracy |precision |recall|f1 score
Fully-connected model 1.0 1.0 1.0 |1.0
Multi-task Learning model 1.0 1.0 1.0 1.0
GA Fully-connected model 1.0 1.0 1.0 |1.0
GA Multi-task Learning model|1.0 1.0 1.0 |[1.0

3.2 Neural Network performance discussion

Though both the two models achieve equally great performance in every score,
but w.r.t. convergence speed, Fully-connected model have the steepest conver-
gence speed, both models performance visualization are displayed in Fig.4 and

Fig.5.

Fig.3. Fully-connected-model performance

Visualzation
training loss test loss training accuracy

test accuracy

10 10

The first picture in Fig.3 shows the training loss w.r.t. each task and the second
one shows the validation loss w.r.t. each task, the third one shows the training

accuracy and the fourth one shows the test accuracy. Fig.5 is t

Fig 4. Multi-task Learning model performan

Visualzation
training loss test loss training accuracy

he same as Fig.4.

ce

test accuracy

8 Chen Luoyu

Thus w.r.t. the accuracy, precision, recall, f1 score, both model are perfect.
Accuracy examine the prediction correctness, precision examine the predictabil-
ity for positive patterns, recall examine the predictability for negative patterns,
f1 score combine both precision and recall, examine the robustness of model.
Hence, both two models can be believed to solve the presence of manipulation
prediction problem perfectly in a quite small volume of dataset. Even after GA,
the selected features generally have number less than 10. thus we can believe for
manipulation detection, statistical model can highly surpass human performance
with accuarcy 0.54 [2].

Compare with the ’Subjective belief’ experiment result, they obtained ac-
curacy of 0.63, Precision 0.64 Recall 0.64 F1 score 0.63 in a Fully-connected
model and accuracy of 0.68, Precision 0.74 Recall 0.72 F1 score 0.72 in Multi-
task Learning model. The Fully connected model architecture is 119-512-2 with
Sigmoid activation layer behind input layer and hidden layer, the Multi-task
Learning model architecture has shared layer as 119-350-350 with Sigmoid ac-
tivation layer behind input layer and hidden layer, and 50-2 in each tower with
a Sigmoid layer behind tower input layer, and totally 23 towers [2]. The reason
mine model is achieving unexpected much better results perhaps comes from or
this experiment used a much larger dataset with much more noise.

When it comes to convergence, Fully-connected model is slightly quicker than
Multi-task learning model. There are two reasons. First the Fully-connected
model is one layer shallower than Multi-task Learning model, and it has much
less parameters, as Multi-task Learning model contain 23 towers behind the
shared layer. As we know,in practice shallower model is easier to train because
less parameters need to be tuned. In contrast, in deeper model, dof increases
drastically, should take longer to tune to fit training data. Second reason comes
from some good aspects of Multi-task learning model, to illustrate this, two
concepts need to be discussed first: one is Attention focusing [3], as in shared
layer, the model is trained to fit loss for each task, so shared layer is trying to
shift attention to generic features rather than a specific task, alternatively, it can
be seen as an Implicit regularization [3], to avoid the learned model overfit on
some small portion the tasks just in order to decrease the one loss for all tasks by
finding the steepest direction, and this is the case for the Fully-connected model.

From Fig.4 and Fig.5, because the shared layer inclines to learn general fea-
ture representation from all tasks, therefore fitting specific tasks becomes slower.
As we can see in epoch step 0-10, there is a much slighter oscillation for training
loss curve on Multi-task learning model than Fully-connected model, indicating
none of these 23 tasks are heavily 'penalized’ because of learning other tasks.
In later steps, the training loss variance for Multi-task Learning model between
most tasks shrinks steadily, while Fully-connected model ’spikes’ twice after 10
epochs; this indicates again the shared layer parameters are only fine-tuned be-

Chen Luoyu 9

cause in the first 10 epochs, generic feature representation has been learned.
However, Fully-connected model’s parameters vibrate heavily for a relatively
much longer time, because although reducing the one for all loss follows the
Adam defined steepest descent direction, but results in some tasks are learned
quickly while some are penalised heavily at the same time, so generic feature
representation is not learned as effectively as Multi-task Learning model.

3.3 Rule Extraction results and discussion

For Multi-task Learning model the explanation accuracy is 54%, for Fully-
connected model the explanation accuracy is 58%, both explanation accuracy
are almost at chance level. To evaluate the validity of gradient based method,
I randomly pick one sample from dataset, then test the actual impact for each
attribute to compare with its maximum gradients, which convey attributes signif-
icance in Gradient sensitivity analysis. That is, if to test the impact for attribute
1, then fix other attributes of this sample and increment only attribute ¢ with step
length 0.05, then feed all incremented data into trained model, a series of model
output from these recreated data can be obtained. I did for all the attributes.
Then calculate the average of first order difference for the output series, and com-
pare with extracted gradient. If a nice positive correlation can be found between
the extracted gradient for attribute i and series’ first order difference average,
then this approach should be sensible. However, after testing, as shown in Fig.5,

Fig.5 extracted attribute grads vs attribute actual influence

Gradient sensitivity analysis performance
..

035 T
0301 '\‘q. .
[} L]
025 Son e 30."
020 ." .
%e .
ses _° .

00..0.'

SLERN | See .
005 ':.:‘:' . .,
0004 e J.&MM‘“ .

0.0 0.1 02 03 0.4 05 0.6
extracted grad

015

actural cutput impact

there is poorly any positive correlation between extracted gradients and the ac-
tual impact in Fully-connected model. For Multi-task Learning model, it has 23
outputs and it can be seen as a combination of 23 Fully-connected model. For
a single Fully-connected model we can not obtain a decent positive correlation,
it is expected that Multi-task Learning model as a mixture of Fully-connected
models will obtain an even worse result.

Omne reason that can possibly cause bad result is model convergence(most
extracted grads are less than 0.1 in Fig.5), because our models are obtained

10 Chen Luoyu

after all training loss decrease almost to 0 (together with validation loss decrease
to 0), gradients for any attributes becomes very small, thus changing a single
attribute maybe too weak to cause prediction changes, then vote from a single
rule becomes indecisive, then maybe only when a collection of attributes have
accumulated a large enough change, the corresponding rule can be more decisive.

4 Conclusion and Future Work

Overall, this paper use bio-signal data and build a Fully-connected model and
a Multi-task Learning model, both achieving perfect result, revealing bio-signal
data can be used to detect liars effectively, undoubtedly superior than human
recognizability. However, gradient analysis based rule extraction is unsuccessful,
the reasons both come from the convergence issue, and the nature of multiple
outputs in Multi-task learning model, so gradient based method for rule extrac-
tion is not quite suitable.

In future, Multitask-learning + LSTM model will be attempted, the input
side is still statistical quantities, but after shared layer, 4%23 LSTM streams
will be appended, so each tower contains 4 streams of LSTM, to process BVP,
GSR, ST, PD time series data respectively. For me this is a novel idea, because
it combines the power of Multi-task learning model in generic feature learning
and the power of LSTM for learning time series data. For rule extraction non-
gradient based method will be attempted, like using decision tree and feed model
outputs as decision tree input.

References

1. Gedeon, T. D., Turner, S. (1993, October). Explaining student grades predicted
by a neural network. In Neural Networks, 1993. IJCNN’93-Nagoya. Proceedings of
1993 International Joint Conference on (Vol. 1, pp. 609-612). IEEE.

2. Zhu X., Qin Z., Gedeon T., Jones R., Hossain M.Z., Caldwell S. (2018) Detecting
the Doubt Effect and Subjective Beliefs Using Neural Networks and Observers’
Pupillary Responses. In: Cheng L., Leung A., Ozawa S. (eds) Neural Information
Processing. ICONIP 2018. Lecture Notes in Computer Science, vol 11304. Springer,
Cham. https://doi.org/10.1007/978-3-030- 04212-7_54.

3. 3.Ruder, Sebastian. “An Overview of Multi-Task Learning in Deep
Neural Networks.” ArXiv:1706.05098 [Cs, Stat], June 2017. arXiv.org,
http://arxiv.org/abs/1706.05098.

4. Engelbrecht A., Viktor H. (1999) Rule improvement through decision bound-
ary detection using sensitivity analysis. In: Mira J., Sdnchez-Andrés J.V. (eds)
Engineering Applications of Bio-Inspired Artificial Neural Networks. TWANN
1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/BFb0100474.

5. Kingma, Diederik P. and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion.” CoRR abs/1412.6980 (2015).

6. Hochreiter, S. and Schmidhuber, J. ”Long short-term memory”. Neural computa-
tion, 9(8), 1735-1780 (1997).

