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Abstract. Building a neural network to learn with perceiver’s pupillary response patterns and the anger they saw is 
genuine or posed, we can get a relatively high accuracy, which means these two factors are deeply connected. We also 
conduct some basic parameter tuning stretagies for the the model, and make the network performence better. 

Futhermore, we implement method to optimize and compress the model structure, analyzing the similarity of hidden 
units and decided which of them should be removed. And we achieve the goal that without significantly performance 
decline, the network’s redundant neurons are removed and the speed of training is rasied. Finally, we use evolutionary 
algorithm to retrain our network. After comparing the results of two training methods, we find the similar results of 
two optimizing methods can indicate that with the structure of 3-layer simple neural network, the model has probably 
reached its maximum accuracy of around 86%. 
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1   Introduction 

Anger expression can be genuine or posed, and sometimes people deliberately act anger to manipulate other’s emotion 

for some purpose [1]. So whether people are able to discriminate the two kind of anger is the main problem that we want 

to address in this paper. We will use a set of data from [1] containing information about perceiver’s pupillary response 

and the anger the saw is genuine or posed and build a neural network to train on it. If the model has a good performance, 

we can say that perceivers discriminate the two kind of anger even unconsciously. Also, we want to implement some 

network optimization and reduction methods according to [2], to improve our neural network as good as possible to prove 

the relationship between the two factors. 

Evolutionary algorithm uses mechanisms inspired by biological evolution. The procedure in natural world like 

reproduction and gene mutation are imitated in evolutionary algorithm. The possible solutions of question to be addressed 

are coded into strings. We can evaluate these strings by calculating their fitness to the problem. Then we manipulate these 

strings to imitate natural procedures like mutation and select good offspring every generation. With the generation grows, 

the solutions of the problem (population) will become better and better. And we achieve the goal of optimize the solutions 
to the problem. One of the advantages of evolutionary algorithm is that it is easy to realize and not restricted to particular 

optimization problem. In this paper we will use evolutionary algorithm as a substitutional method to train our neural 

network. And try to find out the reason of the performance limit of our model. 

After we trained the model, we also want to optimize its structure. Many formats of data we daily meet are of big size 

especially pictures and videos. However, what we want from these pictures and videos usually takes a small percentage 

of the file, which means there are many redundancies in the files [3]. For example, most of the video’s content is coherent, 

which means the adjacent frames in the video do not change much. Then if the video just stores information for every 

frame, there could be a huge waste of data space. Reducing the redundancies is beneficial but this can be difficult by 

traditional algorithms. One implemented strategy in [2] is to let a neural network to learn how to store the information of 

a picture more efficiently, using same input and output to train the network. The result in the hidden layer can be a 

substitutional expression of the original data. Finally, using technique of modifying the hidden layer, we can get the 
wanted size of the picture stored in a compression form. The techniques of compression will be used in this paper’s 

following part. 

2   Method 

The basic outline of the technique implemented on the dataset in this paper can be divided into three main parts. The first 

part is to construct a neural network to make predictions of the anger observed by perceivers is genuine or posed by 

physiological signals which is pupillary responses. The network is implemented with three layers of neurons, and basic 

techniques including back-propagation and crossEntropy loss function. The second part is using evolutionary algorithm 

https://en.wikipedia.org/wiki/Biological_evolution


as a substitutional method to optimize the model. And the third part is building methods according to [2] [5]’s 

implementation of neural network reduction and image compression to prune to network built in part one.  

2.1   Classification of Genuine or Posed Anger 

Classification Problem Setup  

The data in Anger dataset provided by [1], according to the description of the dataset, has 400 inputs and label with 9 

columns and the first two dimensions are experiment number and video number, following by 6 dimensions of pupillary 

responses and one label (genuine or posed). Thus, the classification problem decided is to predict the label of genuine or 

posed with 6-dimension data. 

 

Data Inspection 

 

Before we start to design a specific method to accomplish the classification task, we need to have a detailed inspection of 

the dataset given by [1]. In order to figure out the relationship between humans’ unconscious physiological characteristics 

and the anger they saw is genuine or posed. The experiment where the data comes from asks 20 volunteers to watch 20 
videos. For the 20 videos, there are 10 videos with genuine anger and 10 videos with posed anger. All the videos come 

from YouTube and the experiment designer made the videos of genuine anger from documentaries and news, while the 

posed anger videos are made from movies. All other factors that may potentially influence the volunteers’ judgement are 

removed as much as possible, for example, the format resolution of the video, and the actors in the posed anger movies 

are not famous so that the possibility of volunteers knowing the actor and perceiving the acted anger in the movie is 

reduced. The nine columns of the dataset contain the following information. 

 

O: the id of volunteer who observes the videos of posed or genuine video. 20 observers correspond O1-O20. 

Video: id of videos been watched by volunteers, with posed of genuine anger. 20 videos correspond T1-T10, F1-F20. 

Mean: the mean of observer’s pupillary response. 

Std: the standard deviation of the pupillary response. 
Diff1: the change of observer’s left pupil size 

Diff2: the change of observer’s right pupil size 

PCAd1 and PCAd2: orthogonal transformations 

Label: indicates the video is genuine or posed. 

 

Firstly, we will not use the first two dimensions of the data as input of classifier, because they are directly connected with 

the label result. Then, we can find some clues in the density plots for different input dimensions of data with Genuine and 

Posed labels. In figure 2.1.1, all the six input dimensions that would be given to the classifier are showed with their density 

plots. In this figure we can learn that regarding different dimension of the data, how much the difference is between the 

data with different label. And the figure shows most of the six dimensions (except PCAd1) seem to have similar density 

plots of Genuine and Posed label, which means they may contribute less to the classification. To solve this kind of 

classification problem, there are some common choices including k-nearest neighbor (KNN), support vector machine 
(SVM) and neural network (NN) according to [4]. And for this dataset, the difference showed in PCAd1 may not support 

the KNN and SVM have a good performance to classify the data. [4] also mentioned that the final accuracy result on its 

smile dataset with neural network is the best. Thus we decided to build a neural network for this anger classification 

problem. 

      

        
Figure2.1.1 Density plots for different input dimensions of Genuine and Posed label 



 

Data preprocessing  

 

The 6-dimension input patten in the dataset needs preprocessing. As we can see in Table 1, the average of Mean, is much 

larger than other dimensions. We are also aware of that, from the Data Inspection part, the values of Mean do not 

contribute much to the classifier. Thus it is important to conduct data preprocessing. Or else the learning process will be 

significantly slowed down because Mean dimension can have big weights when the training is in early phase. 

 

Table 1.  The average and standard deviation of six dimensions of input data  

Dimension Average Standard Deviation 

Mean 0.88909015 0.04603393 
Std 0.10246244 0.06934124 
Diff1 0.00842139 0.0065422 

Diff2 0.20957463 0.08669128 
PCAd1 0.03070341 0.01101771 
PCAd2 0.12138183 0.0235699 

 

 

Suitable data preprocessing can improve the performance of data-driven models [6]. We conduct data preprocessing with 

(1). For every column, every value in the column is subtracted with their mean and divided by the variance. And finally, 

we change the text labels to integers for calculating. The genuine and posed labels are changed to 0 and 1 accordingly. 

 

 

𝑥 =
𝑥 − 𝑥𝑚𝑒𝑎𝑛

σ𝑥
2

(1) 

 
 

 

One of the benefits of data preprocessing is speeding up the training process. On the Anger data set, with same neural 

network model, optimizer, and loss function, it takes around 20000 epochs to converge without data preprocessing. While 
it only takes 5000 epochs to converge after above preprocessing. One interesting thing is that although the learning rate 

is same, for the model with data without preprocessing, the reduction of the loss of the training set very little in the first 

5000 epochs. When after 5000 epochs of training, the reduction comes to a relative normal speed. This implies the model 

may consume much time in adapting to the unbalanced data. 

 

 

 

Basic Neural Network Model 

 

Except for input neurons, the network built has 3 layers of neurons with 6, 6 and 1 neurons like showed in Figure 2.1.2. 

At first the number of hidden neurons was set to 10, and it was reduced because of the following tests of performance.  

 
Figure2.1.2 network structure (some weights not drawn) 

 
 



 

  The hidden layer 1 and hidden layer 2 use activation function ReLU (), and the last layer has activation function 

Sigmoid () for classification purpose. The loss function is Binary Cross Entropy which is fit for binary classification 

problems along with Sigmoid (). The optimize method is SGD. 

 

 

2.2   Evolutionary Algorithm on optimizing neural network 

Except using normal back-propagation method to train the neural network, we also implement an evolutionary algorithm 

to optimize the network. The basic idea of using EA is the traditional method gives us a model that do not reach a very 

high test accuracy. We want to find that the performance problem is whether attributed to the learning being constrained 

to a local minimum, or the best performance of neural network model on this dataset have been reached. Because [10] 

shows that evolutionary algorithm, as a general method, can have a good effect on multiple-minimum problems. Thus we 

decided to implement EA. 

Although evolutionary algorithm cannot be used on a classification problem directly, for a neural network which has 

a fully-known structure, we can generally regard the collection of all weights and bias in the network as an individual, 

which means every individual in the population corresponds to one neural network with that same structure. And we can 
conduct evolutionary algorithm to optimize the individual (neural network). 

 

Coding of Individuals 

 

The target neural network, as mentioned above, has 4 layers with input dimension 6, two 6 units hidden layer and a 1 unit 

output layer. To fully store weight and bias in the network, individual needs to have a length of (2): 

 

𝐿 = 𝑈𝑛𝑖𝑡𝑠𝑖𝑛𝑝𝑢𝑡 ∗ 𝑈𝑛𝑖𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛1 + 𝑈𝑛𝑖𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛1 

+ 𝑈𝑛𝑖𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛1 ∗ 𝑈𝑛𝑖𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛2 + 𝑈𝑛𝑖𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛2  
+  𝑈𝑛𝑖𝑡𝑠ℎ𝑖𝑑𝑑𝑒𝑛2 ∗ 𝑈𝑛𝑖𝑡𝑠𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑈𝑛𝑖𝑡𝑠𝑜𝑢𝑡𝑝𝑢𝑡 (2) 

 

  Because the network is fully connected, so there are 6 * 6 weights between the input layer and first hidden layer, 6 * 6 
weights between second and third layer, 6 * 1 weights between third and last layer. And we have 6 + 6 + 1 biases to store. 

The length of individual code should be 91. Individuals should have a form of (3): 

 

𝑋𝑖
𝑡 = [𝑥𝑖1

𝑡  ,· · ·, 𝑥𝑖𝑘
𝑡  ,· · ·, 𝑥𝑖𝑛

𝑡  ]    𝑖 =  1, 2,· · · , 𝑁                                                         (3) 

 

where, 

 

     𝑥𝑖𝑘
𝑡  = real numbers of weights or bias 

          𝑡  = generation of the individual 

          𝑖  = number of individuals 

          𝑛  = number of genes, which is 91 

          𝑁  = number of populations 

 

Evaluation function (decoding of individuals) 

 

To evaluate an individual in the population, we extract the first 36 real numbers from the individual and cast them to the 
type and shape of first weight matrix in the neural network, then assign their values to the matrix. Similarly, number 37-

42 genes are responsible for first part of biases, number 43-78 genes are responsible for second part of weights, number 

79-84 are responsible for second part of biases, number 85-90 genes are responsible for third part of weights and number 

91 gene is responsible for the last bias. 

  After assigns the values in the individual to the network parameter, we have the new network with weights and biases 

optimized by the evolutionary algorithm. Then we use the method 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 which is used in the back 

propagation method to get the accuracy on the whole dataset and take it as the fitness of this individual. From here we 

can also know that we need to maximize the fitness function during the process of evolutionary algorithm. 

 

Population Initialization 

 
Every individual is initialized by a random generator that generates 91 real numbers with standard normal distribution. 

Then we generate 100 individuals as the initial population. 

 

 

Selection 



 

We use tournament selection to select the individuals in the population, tournsize is set to 3. So every time we randomly 

pick up three individuals in the population, and choose the individual with best fitness to the pool of making offspring. 

The procedure will repeat until needed number of individuals have been selected. 

 

Crossover 

 

The method used for crossover is blend crossover, the main steps of this method can be summarized as: 

1. Select two parents 𝑋𝑡 , 𝑌𝑡 

2. For gene 𝑖, calculate 𝑑𝑖 = |𝑥𝑖
𝑡 − 𝑦𝑖

𝑡| 
3. In interval [𝑚𝑖𝑛(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) − αdi , 𝑚𝑎𝑥(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) + 𝛼𝑑𝑖] randomly choose μi 

4. 𝜇𝑖 becomes the value of child gene, 𝑥𝑖
𝑡+1  =  𝜇𝑖 

 

𝛼 is a parameter, and for any 𝛼 >  0, blend crossover will expand the search space. In the implementation, we set 

𝛼 = 0.5. 

 
Mutation 

 

For every gene (real number) in the mutated individual, there will be an independent probability that this gene will change 

to a random number selected according to the Gaussian distribution with mean value unchanged. The variance of the 

Gaussian distribution is set to 0.1. And the independent probability is 0.4. 

 

 

General Settings 

 

For the evolutionary algorithm, we initialize the population as 100 individuals. Crossover probability is 0.8. Mutation 

probability is 0.4, and we set the algorithm will run for 800 generations. 

 

2.3   Compression on the Hidden Layer 

After implementing a neural network classifying genuine and posed anger and using evolutionary algorithm to optimize 

it, we want to address the problem that if the 6, 6, 1 layer structure of the network have some redundancies. So we conduct 

following analysis and techniques to reduce the hidden layer units of the trained neural network. 

 
Distinctiveness analysis 

This analysis is towards the activation matrix, which is the output matrix of a particular layer of neurons when all training 

input enters the model. Every column in the matrix is a vector which corresponds to a neuron. Thus, we can analyze the 

distinctiveness between units according to these vectors. The steps implementing this analysis are showed below: 

 

1. Calculating the activation matrix for the hidden units in the layer to be analyzed, which is the second hidden layer. 

The activation matrix is given by: 

 

𝐴ℎ𝑖𝑑𝑑𝑒𝑛1 = 𝑚𝑎𝑥(0, 𝑖𝑛𝑝𝑢𝑡 ∗ 𝑀𝑤𝑒𝑖𝑔ℎ𝑡1 + 𝑀𝑏𝑖𝑎𝑠1) (4) 

𝐴ℎ𝑖𝑑𝑑𝑒𝑛2 = 𝑚𝑎𝑥(0, 𝐴ℎ𝑖𝑑𝑑𝑒𝑛1 ∗ 𝑀𝑤𝑒𝑖𝑔ℎ𝑡2 + 𝑀𝑏𝑖𝑎𝑠2) (5) 

 
where, 

𝐴ℎ𝑖𝑑𝑑𝑒𝑛1 is the activation matrix of the first hidden layer 

𝑀𝑤𝑒𝑖𝑔ℎ𝑡1, 𝑀𝑏𝑖𝑎𝑠1, 𝑀𝑤𝑒𝑖𝑔ℎ𝑡2, 𝑀𝑏𝑖𝑎𝑠2 are the weights and biases matrices of the first and second layer. 

𝐴ℎ𝑖𝑑𝑑𝑒𝑛2 is the activation matrix of the second hidden layer, the target matrix. 

 

2. We know that every column in the activation matrix corresponds to one hidden unit’s output. So by analyzing the 

similarities between these columns we can get the distinctiveness of hidden units. We use cosine similarity to 

measure the distinctiveness. 

 

𝑐𝑜𝑠_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑉𝑖 · 𝑉𝑗

||𝑉𝑖|| · ||𝑉𝑗||
(6) 

 

where 𝑉𝑖 and 𝑉𝑗  is the 𝑖 𝑡ℎ and 𝑗 𝑡ℎ column vector of the activation matrix. 

 



3. For every two hidden units in the second layer, analyze their similarities. Then record the most similar two units’ 

index 𝑖 and 𝑗 

 

 

Pruning the Network 

After finding the two similar hidden units, we decide to delete the first unit, and add its weights and bias to the second 

unit. The steps implementing the pruning are showed below: 
 

1. Get the indexes of two most similar hidden units 𝑖 and 𝑗.  

2. Add the weight of hidden unit 𝑖 to hidden unit 𝑗 by add the corresponding rows in the weight matrix. 

3. Delete the 𝑖 𝑡ℎ row of weight matrix. 

4. Add the bias of hidden unit 𝑖 to hidden unit 𝑗 by add the corresponding element in the bias vector. 

5. Delete the 𝑖 𝑡ℎ element of bias vector. 

6. We also need to change the weight matrix of output layer similarly, but no need for output layer bias. 

 
  Every time when we prune the network, we delete one of the most similar two hidden units in the second hidden layer. 

Then we fine tune the network with 1000 epochs of back propagation training. 

 

3   Result and Discussion 

3.1 Neural Network and its basic Optimization 

At first the model was trained with not preprocessed data. After training many times with different learning rate and 

finally at 0.05 and momentum 0.8, the best test accuracy is no higher than 55% as showed in Figure 3.1.1. 

 

 
Figure3.1.1   Test accuracy with data not preprocessed 

 

First useful optimization is to change the activation function from ReLU() to Tanh(). After using Tanh() as the first 

two layer’s activation function, test accuracy can reach around 58% as Figure 3.1.2 showes. Also, the speed of learning 

is much higher, which is mentioned in the preprocessing part. 

 
Figure3.1.2  Test accuracy with data not preprocessed and Tanh () 

 

Then the data is preprocessed, and after using different activation function, ReLU() retrive the position of best function. 

With data preprocessed and the ReLU () function and learning rate 0.001, the model can achieve best test accuracy around 
75% (Figure 3.1.3). However, Tanh () does not have a good performance. 



 
Figure3.1.3   Test accuracy with data preprocessed and ReLU () 

 

After preprocessing the data, one of the most important factors of the model is learning rate, and the final progress is 

made by raising the learning rate. When learning rate is higher than around 0.01(0.017 in the Figure 2.1.6) and with a 

momentum 0.9. The best test accuracy can reach 85%, which means that the higher learning rate allows the model to get 

over some saddle points constraint the accuracy to 75% (Figure 3.1.4). 

 
Figure3.1.4   Test accuracy with data preprocessed, ReLU () and higher learning rate 

 

3.2 Evolutionary Algorithm for Optimization 

 

The result of evolutionary algorithm design in the Method section for optimizing the neural network is showed in Figure 

3.2.1. Because we randomly initialize all weights and biases of the network, at first, the mean accuracy of individuals is 

50%. Then with the progress of evolution, the best accuracy raises to around 86%. For this optimizing method, we can 

use the best individual in the last generation of population as the final weights and biases for our neural network. So we 

can conclude that evolutionary algorithm has trained the model to an accuracy of 86%.  

 

 

 
Figure3.2.1   Accuracy of the neural network model optimized by EA 

 

 

 

 

 

 

 



3.3 Neural Network Pruning  

After implementing pruning the hidden layers, we want to find the influence of pruning hidden units on the performance 

of the model. In Figure 3.3.1, there are 5 subfigures to show the pruning process. In the first subfigure, the accuracy is 

given by the unpruned neural network after 10000 epochs of back propagation training. Then every time we prune one 

hidden layer unit in the network and train another 1000 epochs. Subfigure 2-5 shows the results of accuracy of network 

after pruning 1, 2, 3, and 4 hidden units. 
 

         
(1)                                            (2) 

           
                   (3)                                           (4) 

 

 
                                                    (5) 

Figure3.3.1   Accuracies with the pruning process on hidden layer 
 

 
According to the result of pruning, although the network with 6 hidden units can learn well, there are still space to 

optimize to model (some hidden units are redundant). When reduce the number of hidden units to 3, the performance of 

the model remains around 90% of its peak. When delete the fourth unit, the performance declined significantly. And we 

can draw a conclusion that this model may need at least 3 hidden units in the hidden layers to learning from data. This 

analysis is stick to part of the conclusion in [5] that when we want to compress the image with a big scaler, the quality 

will decline because the units remained in the hidden layer are not enough to be able to store the majority information of 

the image. 

3   Comparison and Limitations 

Firstly, we can compare the results of back propagation training method and evolutionary algorithm on the neural network. 

After tuning many hyper parameters of the back propagation method, the model after 10000 epochs of training can reach 

an accuracy of 85%. And with 800 generations of evolution, evolutionary algorithm achieves an accuracy of 86%. These 

two similar accuracies can address the problem we mentioned in the introduction part. Can the 85% accuracy of back 

propagation method due to being constrained by some local minimum? We cannot conclude with complete certainty，  



but the answer can be no because evolutionary algorithm usually has a good performance on finding the global best 

solution. And its best accuracy is still around 85%. 

 

Then we compared our model with the method implemented in [1], their model can reach an accuracy of 99.6% on the 

Anger dataset. While model in this paper can only reach around 85%. One of the big differences between the two models 

is the node number in the hidden layer, in [4]’s implementation, they achieve around 95% accuracy with about 13 hidden 

nodes. However, due to the lack of experience, the maximum number of hidden units I ever set is 10, which can be a 

factor of the performance gap. Another difference is the training function, Levenberg-Marquardt training function [7] was 
used in the implementation, the adjustable step size may contribute to the better result. On the other hand, the model 

developed in this paper after tuning the hyper-parameter and hidden layer compression, still has a relatively good 

performance with simple structure. This can be the only advantage of it. 

 

4   Conclusion and Future Work 

In conclusion, implementing a simple structured neural network for classification the anger perceivers saw is either 

genuine or posed is achievable. And with some reasonable adjustment during testing the network, we can get a model 

with around 86% or higher accuracy of classification. This proved that perceiver’s pupillary response patterns can reflect 

the anger they saw is genuine or posed even the precievers are unconscious. 

For future work, after using NN to building relationship between facial emotion and perceiver’s physiological signals, 

speech emotion detection neural network has also been build up [8]. We may design and optimize a network that use 

people’s speech emotion to predict whether their facial emotion is genuine, which could be interesting. And we can also 

implement advanced network pruning technique including using thresholds and structured filter level pruning [9]. 
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