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Abstract. The deep learning is prevalently applied in the image recognition tasks in recent decade and it obtains 

considerably good performance, especially on the database with lab-controlled properties. In many deep neural 

networks, deep convolutional neural network stands a crucial role, and it is widely used on image related tasks. 

However, many deep neural networks fail to deal with the small unconstrained image database. In this paper, we 

basically construct several CNN classifiers, CNN Autoencoder and fine-tuning ResNets, to deal with the facial 

recognition challenge on SFEW dataset which consists of close to real-world properties, and the size of the database 

is small. To avoid overfitting, we also compare several regularization strategies, including weight decay, 

distinctiveness pruning and dropout to generalize the facial emotion recognition model. In this paper, we obtain a 

CNN classifier with maximum test accuracy around 48.68% and the fine-tuning ResNet18 gains the highest test 

accuracy about 57.43%. 

Keywords: SFEW, CNN, Autoencoder, neural network, FER, fine-tuning, weight decay, distinctiveness pruning, 

dropout 

1   Introduction 

Since Krizhevsky, Sutskever and Hinton achieved low error rate on ImageNet recognition challenge via deep 

convolutional neural network (CNN) in 2012, computer vision has gained considerable development in recent decade. 

The technology explosion of object recognition based on image or video facilitates the rapid growth of artificial 

intelligent (AI) related applications and products. Facial Expression Recognition (FER) is a popular task which gains 

enormous interests from the experts throughout the world. Many research experiments obtain pretty good accuracy by 

constructing the machine learning model based on the images generated in lab-controlled environment (Dhall et al., 

2011). However, the classification on images or videos taken from real-world condition are more complicated as the 

real-world environment introduces considerable noises, such as illumination, face angle, which increases the difficulties 

to get high recognition accuracy.   

Static Facial Expressions in the Wild (SFEW) extracting the temporal image data from Acted Facial Expressions in 

the Wild (AFEW) is a database comprising 675 screenshots from movies (Dhall et al., 2011). The images in SFEW 

possess close to real world properties, such as varied head posture, large age range and realistic illumination, as well as 

the resolution of the images are unconstrained (Dhall et al., 2011). Dhall et. al (2011) has applied the local phase 

quantization (LPQ) and the pyramid of histogram of oriented gradients (PHOG) descriptors to process the images in 

SFEW and used a non-linear support vector machine (SVM) as the classifier to obtain a baseline accuracy about 19.0%. 

We would like to construct some new FER classifiers on the SFEW dataset to improve the recognition accuracy, as well 

as compare the effects of the classifiers.  

Krizhevsky et al. (2012) trains a deep neural network (DNN) firstly stacking convolutional layers, obtaining 17% 

top-5 error rate and 26.2% second-best error rate on ImageNet LSVRC-2010 consisting of 1000 classes. Therefore, we 

devise a deep convolutional neural network on the images in SFEW to train a FER classifier and evaluate the 

performance. In addition, Autoencoder can be feature selection model as it forces to learn discriminative features from 

input (Wang et al., 2017). Thus, we design an Autoencoder to extract high-level features of images and use the 

extracted features to train a FER classifier. We would like to compare the performances between extracting features 

from Autoencoder and extracting features by the LPQ and PHOG descriptors. Furthermore, He et al. (2016) devise a 

very deep CNN for object detection task which achieves state of art result on ImageNet ILSVRC 2015 dataset 

containing 1000 classes, about 3.57% top-5 error rate. The authors utilize residual connections to skip some layers to 

decrease the neural network complexity, which enables the possibility to construct up to 152 layers network and address 

the degradation issue in DNN. Thus, we would like to use the different layer number models of ResNet (He et al., 2016) 

as the pretrained models to apply different fine-tuning strategies to obtain some new models on SFEW and analyze the 

effects.  

In DNN tasks, complex network with too many layers easily encounters effectiveness degradation due to gradient 

vanishing and exploding (Glorot & Bengio, 2010). In addition, the performance of the training model decreases 

dramatically as the overfitting is occurred easily when training data is small (Pasupa & Sunhem, 2016). SFEW is a 

small dataset contains 675 screenshot images from movies, and we would like to train a deep CNN on the dataset, 



which potentially encounters the degradation and overfitting issues. Thus, we would like to apply some strategies, 

including distinctiveness pruning (Gedeon & Harris, 1991), dropout (Srivastava et al., 2014) and L2 weight decay 

(Loshchilov & Hutter, 2017), in our DNN models to prevent the degradation and overfitting issues in our DNN models, 

as well as compare the effects of the three regularization strategies. 

2   Dataset 

2.1   Dataset overviews  

SFEW dataset. The report research bases on the unconstrained image data from SFEW (see Fig. 1) consisting of 675 

screenshots extracted from the temporal data in AFEW (Dhall et al., 2011). Basically, the static images possess close to 

real-world conditions that the head posture, person age and illumination are similar with the realistic situations as they 

are originated from the movies (Dhall et al., 2011). The SFEW labels data with 7 classes comprising “Angry”, 

“Disgust”, “Fear”, “Happy”, “Neutral”, “Sad” and “Surprise” and they are denoted by integers from 0 to 6 respectively 

in this research task. The entire data distribution along with the facial emotion class is balanced that each class contains 

100 data points except the class “Disgust” contains 75 data points (see Fig. 2). In addition, the facial emotion images are 

captured from 102 subjects aged between 1 and 70, and the data distribution along with the subject is imbalanced (see 

Fig. 2). 

 

 
 

Fig. 1. Sample images from the SFEW dataset 

 

In addition, Dhall et al. (2011) train the FER model by using the features extracted by LPQ and PHOG, and the 

features are only kept the first five principal components (CPA) respectively, remaining about 98% variance, which can 

retain most information stored in the original images. The authors combine the top-5 CPA features of LPQ and PHOG 

and feed the combine vectors to a non-linear SVM, gaining a baseline accuracy about 19%. In our experiments, we use 

the 10-dimension features of LPQ and PHOG as well, as we would like to compare with the FER performance of 

extracting features from images via CNN. Basically, the 10-dimension CPA features are stored with the corresponding 

image names and facial expression labels, and they have the same order with the raw SFEW images. 

 

 
Fig. 2. Data distribution along with the subject and data distribution along with the facial emotion class in the SFEW database 

 

Data Preprocessing. The experiment conducts three protocols to partition the data into training dataset and test dataset, 

consisting of strictly person specific (SPS), partial person independent (PPI) and strictly person independent (SPI) 

(Dhall et al., 2011). In practice, the facial emotion recognizer potentially classifies the facial expressions on the images 

containing people have not been seen. According to Dhall et al. (2011), SPS is the ideal situation that we suppose the 

model see the facial emotions from all people during the training phase; in contrast, SPI is the worst situation that the 

model does not see the facial emotions of any people in the testing dataset; the PPI partitions facial emotion data 



without considering the person information, which resembles the real-world situation. Therefore, the evaluation results 

of facial emotion recognizer obtained by PPI protocol is closer to the performance in practice. In this paper, we mainly 

use the PPI protocol to evaluate the performance of our FER classifiers and We briefly compare the performances under 

the three protocols. 

The image file name contains the movie name and character IDs, for example, “Hangover_010805134_00000019” is 

a name of an image that “Hangover” is the movie name and “00000019” is the character ID in the movie (Dhall et al., 

2011). Thus, the person information can be extracted from the image file name which can be used in the SPI and SPS 

protocols. In addition, Facial emotions labels are transformed to integers from 0 to 6. Images are fed into the CNN 

models directly and we apply normalization on each batch of dataset. The data of CPA features extracted by LPQ and 

PHOG are normalized on the entire dataset by subtracting the mean and dividing by the deviation.  

3   Method 

3.1   CNN model 

The FER classifier is basically implemented by a deep CNN model with 3 convolutional layers and 2 full-connected 

layers (see Fig. 3(a)). Basically, each convolutional layer doubles the filters, thus, the channel numbers are 64, 128 and 

256 after each convolutional layer respectively. In addition, we stack a max pool layer after each convolutional layer to 

decrease the complexity. In the deep CNN model, we use LeakyReLU as the activation function in each convolution 

layer to avoid too sparse feature maps since some images are too dark that the people and the background are similar. 

Furthermore, we normalize the hidden features learned by each convolutional layer on the batch of data. After 

convolutional layers, we flatten the learned features of each image to a long vector to be fed into the last 2 full-

connected layers for classification. In each full connected layer, we use ReLU as the activation function. In addition, we 

put a dropout regularizer at the first full-connected layer to avoid degradation and overfitting issues. As the FER model 

aims at classifying images into 7 classes, the activation function in the output layer is the logarithmic softmax. 

Therefore, we can use the negative log likelihood loss function to calculate the loss during the training. The optimizer in 

the experiments is stochastic gradient descent (SGD) with momentum.  

 

 
(a) 

 
(b) 

Fig. 3. (a) The structure of the basic facial emotion classifier1. This is a DNN with 3 convolutional layers and 2 full-connected layers. 

(b) The structure of the facial emotion classifier processing the images and data of LPQ and PHOG features simultaneously2. The 

model concatenates a CNN and a full-connected model to train the images and LPQ-PHOG features respectively. And the classifier 

combines features learned from CNN and full-connected model to do the classification. 

 

Based on the basic deep CNN model, we also implement a model concatenate a deep CNN model with a full-connected 

model (see Fig. 3(b)). The CNN model aims to train the images and the full-connected model aims to train the LPQ and 

 
1 The model is named as CNN_base in the paper 
2 The model is named as CNN_and_PHOG_LPQ in the paper 
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PHOG feature data. The FER model concatenates the feature vector learned by CNN and the feature vector learned by 

full-connected model to get a new feature vector which combines the features learned by CNN, LPQ and PHOG. In our 

experiments, we would like to compare the classification performances by different combination of features. In other 

words, we would like to compare four feature combinations, including pure CNN features, CNN and LPQ features, 

CNN and PHOG features, and all features. The activation functions in convolutional layers and full-connected layers, 

loss function and optimizer are same with the basic CNN model. 

3.2   Autoencoder based on CNN 

The Autoencoder is a feature selector which can learn high-level features from input data. It combines an encoder and a 

decoder which learns high-level features and reconstructs images respectively (see Fig. 4). The encoder contains 3 

convolutional layers and there is a max pool layer follows by each convolutional layer. Symmetrically, the decoder 

contains 3 deconvolutional layers and each deconvolutional layer is stacked after a max unpool layer. Similarly, the 

activation function after each convolutional layer is LeakyReLU expect the last convolutional layer. The activation 

function in last layer is ReLU as the value range of the RGB images is 0-255. The learned features in each 

convolutional layer are normalized before passing to the next convolutional layer. In addition, the optimizer is SGD 

which is same with the approach in basic CNN model. As the decoder aims to reconstruct the images by the features 

learned from decoder, we use mean square error (MSE) as the loss function to calculate the similarity between raw 

images and reconstructed images. 

 

 
Fig. 4. The structure of the Autoencoder based on CNN. It combines by an encoder and a decoder. The encoder contains 3 

convolutional layers, and the decoder contains 3 deconvolutional layers. 

 

Basically, the CNN Autoencoder learns features for the images in the entire SFEW dataset. The shape of the feature 

map in the bottleneck layer is (256, 5, 3) which denotes 256 channels, width 5 and height 3. The features in the 

bottleneck layer are learned features from the encoder and we would like to use the bottleneck layer features to train a 

facial emotion classifier. The facial emotion classifier is implemented by a one-hidden-layer neural network and all 

layers are fully connected. We transform the bottleneck features of an image learned from the CNN Autoencoder to a 

long vector before feeding into the classifier. Therefore, the input layer contains 3840 neurons to fits the dimension of 

input data. There are 64 hidden neurons and the activation function at hidden layer is a TanH function to band the 

output value of hidden neuron between -1 and 1. The output layer contains 7 neurons as the SFEW database consists of 

7 classes and the activation function of the output layer is a softmax function.  

The shallow classification neural network is trained by K-fold cross validation as the SFEW database is quite small. 

The K-fold cross validation approach randomly divides the training dataset into K subsets. In each training epoch, we 

iteratively use K-1 subsets as the training data and the rest subset as the validation data. Hence, each subset can be used 

for training K-1 times, and we can pretend to have much more data which can be fed to the neural network. The cross-

entropy loss function is used for training the classifier. It evaluates the probability distribution difference between the 

ground truth and the predicted result and attempts to minimize it, however, it might lead to overfitting (He et al., 2019). 

Basically, we also use the shallow neural network trains on the combined LPQ and PHOG feature data. Therefore, 

the input layers should be adjusted to 10 neurons to fit the dimension of LPQ and PHOG feature data. Then, we can 

compare the classification performance based on CNN Autoencoder learned features and LPQ-PHOG feature.   

3.3   Fine-tuning ResNet 

The fine-tuning ResNet models implement some transfer learning by using the ResNet as the pretrained neural network 

and fine-tuning the model on the SFEW dataset. As ResNet is a state of art object detection model trained on the 

ImageNet database which contains image with real-world conditions, the SFEW dataset possess the similar real-world 

properties as well. It enables us to attempt a transfer learning model by using the pretrained ResNet on SFEW. In our 

experiments, we apply three fine-tuning approaches, including last layer fine-tuning (LLF) and all layer fine-tuning 

(ALF). LLF aims to discard the final full-connected layer of the ResNet and add a new full-connected layer with 7 

neurons as the output layer. Then fine tuning the added output layer merely and the weights of the convolutional layers 

in ResNet are not updated. ALF aims to discard the final full-connected layer of the ResNet and add a new full-

connected layer with 7 neurons as the output layer, which is similar with the LLF. However, it updates the weights of 
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all layers in the ResNet and the new added layer. In addition, we would like to evaluate the performance of the fine-

tuning models based on different ResNet. In other word, we use the ResNets with 18 layers, 34 layers, 50 layers, 101 

layers and 152 layers as the pretrained model. The loss function is cross-entropy as the activation function at the output 

layer is softmax. The optimizer is SGD without momentum as the transfer learning model is required to fine tune the 

parameters merely.  

3.4   Regularization approaches 

As the SFEW database contains small number of data and the full-connected layers of the shallow neural network in the 

CNN Autoencoder model section are wide, the training is potentially overfitting when training small dataset on a large 

parameter matrix. Generally, regularization strategies can help the model avoid overfitting. In our experiments, we 

compare the performances of three regularization methods, including weight decay, distinctiveness pruning and 

dropout. 

  

Weight Decay. In the deep neural network training, overfitting might be occurred when training data is small, or the 

complexity of the neural work is high. And overfitting not only significantly impacts on the performance of neural 

network, but also decreases the computation efficiency of the model. Typically, the overfitting implies the parameters of 

the neural network are complicated that they can perfectly fit the training data, however, it fails to perform well on 

unseen data as the model is not generalized. To overcome the issue, weight decay is a prevalent strategy to generalize 

the model. Basically, it adds a regularizer on the loss function, commonly applying L1 norm and L2 norm. L1 norm can 

cause a sparse weight matrix that it prefers to zero some weights and L2 norm is more stable than the L1 norm (Luo et 

al., 2016). In our case, we use the L2 norm in the Adam optimizer to implement the weight decay purpose. According to 

the formulas (1), the first term denotes the cross-entropy loss, and the second term is the L2 norm regularizer. The 

weight decay focus on minimizing the L2 norm of parameter matrix, thus, it decreases the complexity of the neural 

network. Furthermore, the coefficient of the L2 norm is vital importance as a large coefficient may lead to underfitting. 

 

(1) 

Pruning. Pruning is another popular approach to decrease the network complexity by removing some hidden neurons 

based on some benchmarks. In our case, we implement a pruning strategy by considering the distinctiveness between 

the functionality of hidden neurons, which is firstly applied in the research by Gedeon and Harris (1991). According to 

Gedeon and Harris (1991), the distinctiveness between a pair of hidden neurons reflects the angle separation of the 

hidden neuron functionality vectors. The authors indicate that the functionality of a hidden neuron is defined as the 

activated output of the neuron having the same dimensionality with the number of the input in a training batch. Since 

the activation function of hidden layer in our full-connected classifier is a simple TanH function banding the hidden 

output values in the range from -1 to 1, hence, we can calculate the cosine similarity between each pair of neurons’ 

functionality vectors and the angle separation between each pair of neurons are bounded in 0º to 180º (Gedeon & 

Harris, 1991). According to Gedeon and Harris (1991), the angle separation which is lower than 15 º implies the two 

hidden neurons are too similar and one of them should be removed. On the other hand, a pair of neurons with 165 º or 

higher angle separation are functional complementary, and both should be removed. 

 

Dropout. We also experiment the dropout strategy to regularize our full-connected classifier in CNN Autoencoder 

section. Dropout is a typical regularization method prevalently applied in the image recognition tasks based on the 

convolutional neural network (CNN). According to Krizhevsky et al. (2012), dropout approach aims at randomly mask 

50% of hidden neurons in each epoch of training. When training process is completed, the entire neural network will be 

used for testing. Basically, it can reduce the complexity of the neural network structure to speed up the training phase 

and prevent overfitting. 

3.5   Evaluation metrics 

 

We basically use the testing accuracy as the evaluation metrics to compare the performances of different models with 

varied hyperparameters, training methods and regularization approaches. In addition, we compare our model 

performances with the baseline about 19% which is obtained by the non-linear SVM classifier in the research of Dhall 

et al. (2011). The expressions of accuracy can be seen in formulas (2), where tp, tn, fp, fn denotes true positive, true 

negative, false positive and false negative.   

 
(2) 



4   Results and Discussion 

4.1   CNN model performance 

We implement a basic CNN model as the baseline of our experiments, and we compare the classification performances 

with different settings under PPI protocol. Basically, we use the test accuracy as the benchmark to evaluate the settings 

in the basic CNN model (see Fig. 5). We change the kernel size of all convolutional layers, and the CNN classifier 

obtains the highest test accuracy 41.73% when kernel size is 20. However, all test accuracies with different kernel sizes 

are located between 40% and 42%. The kernel size does not significantly impact on the CNN classifier performance as 

the dimension of the output long vector after the final convolutional layer is a 768 when kernel size is 25, which 

preserves sufficiently fine-grained information from the input images. In addition, we compare the classification 

performance by using the average pool and max pool after each convolutional layer respectively, the max pool approach 

introduces better performance than the average pool approach. The test accuracy of the model applied max pool and 

average pool accuracies are around 35% and 40% respectively. Furthermore, we compare the performance of the CNN 

classifier by using different combinations of kernel size and stride, including (10, 2), (10, 4) and (25, 2)3. And the CNN 

model with the combination of kernel size and stride (10, 2) obtains the highest performance. Furthermore, the 

LeakyReLU with different negative slopes do not impact the performance of the CNN classifier dramatically. 

According to Fig. 5, the test accuracy of 0, 0.1, 0.01 and 0.001 negative slopes are all around 45% to 49%, amongst, the 

model using LeakyReLU with 0.01 negative slope obtains the highest test accuracy about 48.68%. Lastly, we compare 

the CNN with different number of full-connected layers and the effect of dropout. Basically, we have a 2 full-connected 

layer CNN classifier and a 4 full-connected layer CNN classifier, and the dropout regularizer is put at the first full-

connected layer in these two models. According to Fig. 5, the two models present similar performance as the 

convolutional layers have learned the features well. Therefore, the deepness of the final full-connected layers cannot 

help to learn more features. In addition, when we add dropout regularizer on all hidden full-connected layers in the 4 

full-connected layer CNN classifier, the convergence speed of the model significantly decreases, however, it can obtain 

the similar test accuracy with the 4 full-connected layer CNN classifier which only contains dropout regularizer in the 

first full-connected layer. Therefore, the dropout regularizer can help the CNN model get a more stable training result. 

 

 
Fig. 5. The test accuracy of basic CNN model with different settings.  

 

In addition, we attempt different data partition protocols when training the basic CNN classifier and the result can be 

seen in Table 1. Obviously, the CNN model improves the FER performance on SFEW significantly. Under SPI protocol, 

the test accuracy of the CNN classifier is 39.39%, which is much higher than the baseline accuracy, 19% (Dhall et al., 

2011). And the “BaseModel_K_fold” which is a full-connected neural network with 1 hidden layer also obtains better 

performance when using the LPQ-PHOG feature data, about 27.27% test accuracy under SPI protocol. Generally, the 

 
3 (10, 2), (10, 4) and (25, 2) are combination of kernel size and stride: (kernel size, stride) 



convolutional layers can learn better features than the LPQ and PHOG descriptors and the output layer using full-

connected layer performs better than the SVM. 

Table 1.  Test accuracies of models based on PPI, SPI and SPS protocols 

Model Name PPI SPI SPS 

CNN_base 41.73% 39.39% 42.42% 

BaseModel_K_fold4 31.58% 27.27% 25.62% 

SVM (baseline) 5 - 19.00% - 

 

Furthermore, we train a CNN_and_PHOG_LPQ model concatenating a CNN and a full-connected model demonstrated 

in Fig. 3(b) and the performance can be seen in Fig. 6. Obviously, the performance of the model combining the CNN 

features and LPQ/HPOG features is higher than the model with pure CNN model. It implies that the combination of 

different feature selection approaches can extract more useful features as different approaches focus on different aspects 

of data. The combination strategy can preserve the advantages from different feature selection methods, which can 

obtain better performance.  

 

 
Fig. 6. The test accuracy of CNN_and_PHOG_LPQ model. 

4.2   CNN Autoencoder model performance 

In our experiments, we implement a CNN Autoencoder to learn the high-level features of images in SFEW dataset. We 

train the CNN Autoencoder with 100 epochs to get convergence, and the sample of reconstructed image can be seen in 

Fig. 7. We use the feature maps in the middle bottleneck layer in the CNN Autoencoder as the input to the full-

connected 1 hidden layer neural network. Before feeding the learned features into the shallow neural network, we 

flatten the feature maps of each image to a long vector with length 3840. In addition, we apply L2 norm weight decay, 

distinctiveness pruning and dropout on the shallow neural network to compare the classification performances (see 

Table 2). Both L2 norm weight decay and distinctiveness pruning can obtain higher test accuracies, about 43.51% and 

43.18% respectively. It implies the two regularization approaches can effectively generalize the model and avoid 

overfitting without sacrificing the classification performance. However, the test accuracy of model applying dropout 

regularizer is much smaller than the accuracy of the model without any regularization methods. It seems that the 

dropout regularization can perform well on CNN model, but it cannot preserve a good performance on a shallow neural 

network even it contains large number of hidden neurons, as the loss is oscillated dramatically that the shallow neural 

network would easily jump out from a local minimum. 

 

 
Fig. 7. The sample reconstructed image obtained by CNN Autoencoder 

 
4 The model is a 1-hidden layer neural network useing the LPQ-PHOG feature data as input 
5 The model in the research from Dhall et al. (2011) 

Reconstructed image Raw image



Table 2.  Test accuracies of the full-connected classifier trained on features learned by CNN Autoencoder over different 

regularization strategies based on PPI protocol 

Model Name Regularization Method Test accuracy 

BaseModel_K_fold -  41.73% 

BaseModel_K_fold Weight decay6 43.51% 

DistinctivenessPruning_K_fold Pruning [15º, 165º] 43.18% 

ModelDropout_K_fold Dropout 32.84% 

4.3   Fine-tuning RestNet performance 

In our experiments, we compare the performances of different fine-tuning ResNet model and different fine-tuning 

method (see Fig. 8). We fine-tune the ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152 with 0.0005 learning 

rate. The suffix FC of label names in legend in Fig. 8 denotes the LLF fine-tuning method and the suffix ALL denotes 

the ALF fine-tuning method. Obviously, the transfer models applying ALF fine-tuning method obtain higher test 

accuracies than the models applying LLF, as the SFEW dataset is not very similar with the ImageNet dataset. All 

models trained by ALF gain the test accuracies around 45% to 58%, where ResNet18 obtains the largest test accuracy 

about 57.43%. And the ResNet with larger layer number performs worse, because the deeper ResNets learn more 

specific features from ImageNet dataset that they cannot apply the pretrained weights to learn the features well on 

SFEW dataset. 

 

 
Fig. 8. The test accuracy of fine-tuning ResNets. 

4   Conclusion and Future Work 

In this report, we construct several neural network models to perform as a facial emotion classifier based on SFEW 

which possesses the near real-world properties. In comparison with the baseline accuracy implemented by a non-linear 

SVM classier, both basic CNN classifier and the shallow neural network with one-hidden layer perform better FER 

capacities, with 39.39% and 27.27% testing accuracies under SPI protocol respectively. In addition, the basic CNN 

classifier obtains the highest classification performance when the 20-kernel size, 2-stride value, 0.01-LeakyReLU 

negative slope and max pool method in each convolutional layer, which obtains maximum 48.68% test accuracy. 

Furthermore, the CNN_and_LPQ_PHOG model concatenating the features learned by CNN with the features of LPQ-

PHOG can obtain better performance than the pure CNN model. Moreover, the full connected neural network with 1-

hidden layer can get an acceptable classification accuracy around 41.73% when using the learned features from CNN 

Autoencoder as input. And the L2 norm weight decay and distinctiveness pruning can decrease the model complexity 

 
6 L2 norm (λ = 0.001) 



without sacrificing the performance which can get 43.51% and 43.18% test accuracy respectively. However, the 

dropout method sacrifices the model performance as it may easily jump out from the local minimum in the shallow 

neural network. Lastly, the ResNet18 with ALF fine-tuning method can obtain highest classification performance on 

SFEW with 57.43% test accuracy. And the deeper ResNets are not fitting well with the SFEW dataset as they learn too 

specific features on ImageNet dataset. 

Currently, we implement some deep neural network models on SFEW with good performance. However, we mainly 

use the raw images as the input for the CNN models, which triggers considerable computation complexity. In addition, 

the background in some images occupies large area which may cause worse learning result. There are many facial 

cropping methods on real-world images which can eliminate many noises from images (Koestinger et al., 2011; Li et 

al., 2015). Thus, we can apply some facial detection methods to crop the faces of people form the SFEW images before 

applying the FER classification to try to get higher performance. 
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