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Abstract. Depression as a clinical disorder is difficult to diagnose correctly however we can possibly sense 
depression in others and give off subconscious physiological responses. CasPer is a neural network algorithm that has 
shown strength to generalise well on toy problems and Genetic Algorithms can perform strongly on hyperparameter 
tuning tasks such as feature selection. Pupil Dilation Data of observers of depressed people were collected from a 
previous experiment and used to train neural networks to help diagnose depression. However the networks showed 
poor results with the CasPer network achieving only a 37.5% accuracy in classifying depression and CasPer + 
Genetic Algorithm performing slightly worse at only a 36.5% accuracy. However both of these surpass the baseline 
result of a simple neural network which only achieved 22% accuracy.  
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1   Introduction 

Depression is a chronic, widespread, and internalising mental disorder. The general symptoms involve a constant long 
term lingering feeling of moodiness, sadness and/or apathy for no apparent reason. It is different to general mood 
fluctuations and acute emotional responses that people generally face in daily events. Depression can be debilitating to 
those affected by it, making even the simplest of tasks and responsibilities difficult and draining. The symptoms and 
severity of depression lie on a wide spectrum from a general feeling of sadness, to at worst self-harm, suicidal thoughts, 
behavior and even attempts (N. Cummins, S. Scherer, J. Krajewski, S. Schnieder, J. Epps, and T. F. Quatieri, 2015). Due to the severe 
impact depression can have on people, it is paramount there are effective diagnostic methods available.  

 
Unlike the majority of clinical diseases and disorders which can receive (relatively) conclusive diagnoses from hard 

evidence such as blood tests, laboratory tests etc. Depression diagnosis using hard evidence is currently limited due to 
the nature of it as a mental disorder. Therefore, most current techniques for diagnosis lead it to require qualitative 
judgements from a clinician. These methods are not only subjective and therefore biased but can also be very time 
consuming. Clinician diagnosis generally involves an interview styled assessment such as the Hamilton Rating Scale for 
Depression (HAMD) which rely heavily on patients opening up and willingly honestly sharing themselves and their 
experiences. Theses assessments will also be heavily dependent on individual clinicians’ abilities and experience due to 
the subjective qualitative nature of depression as a clinical disorder.  

 
 
With a modern boom in machine learning technologies and its proven ability in assisting in difficult classification 

tasks, it is natural to therefore investigate the possibilities of having machine learning algorithms assist and make 
possible depression diagnoses for us. There are many existing approaches of using a patient’s physiological signals to 
predict depression. However, in this paper we will investigate and discuss depression classification using an observer’s 
physiological signals, in particular we will attempt the classification of depression from an observer’s pupil dilation 
physiological signal. There are also many different classification, machine learning and hyper parameter tuning 
techniques to choose from, in this paper we will take a deep dive into using the CasPer Neural Network training 
algorithm and also extend it with feature selection optimized using a genetic algorithm and compare the results between 
each other and a general multilayer perceptron model in classifying depression based on an observers pupil dilation.  

 
1.1 The Data 
 
  In order to achieve our task, first a dataset is needed. The dataset we will use comes from the paper detecting 
emotional reactions to videos of depression (X. Zhu, T, Gedeon, S Caldwell, R Jones). The paper collects a dataset of 
various physiological signals of observers observing videos of people with varying levels of depression, these are then 
fed as inputs to a neural network, where they are then used to help create a classifier for depression, the labels for the 
dataset are the actual depression levels from 1-4 referring to no depression at 1, mild depression at 2, moderate 
depression at 3 to severe depression at 4. The paper uses a simple multilayer perceptron model and finds that the Pupil 
Dilation features provide the strongest and most accurate classifications, hence in this paper we aim to extend on this 
problem. The pupil dilation dataset was collected from 12 observers each observing 16 videos of people with varying 
levels of depression giving a total of 192 total datapoints. Pupil dilation metrics were collected during the original 
experiment and are split into 39 different features. These extracted features are time domain features (for example 
average pupil size, max, min, standard deviation, and variance etc.) of each individual pupil sizes, since each individual 
has different pupil sizes and physiological features in general, the data has been normalized towards each individuals 
maximum and minimum sizes.  
 



 

 

1.2 CasPer 

CasPer (T.D. Gedeon & H.K. Treadgold, 2006) is a neural network training algorithm that builds on using the 
Cascade Correlation Algorithm (Fahlman and Lebiere, 1990). The general idea of Cascade correlation is to 
automatically find the optimal network structure. Cascade Correlation is a constructive algorithm which begins by 
training a network that is fully connected from input to output and then a training loop occurs where a new neuron is 
installed and trained to maximise the correlation between the neurons output and the networks training error, freezing 
existing weights while doing so. This is repeated, so neurons get added one at a time producing a cascading effect of 
new layers. In CasPer however, we use RPROP (Resilient back-propagation) to train the whole network at once but 
with each parameter having different learning rates based on when the weight was added to the network. In the few toy 
examples in the paper, Casper was shown to produce more compact networks with less redundant parameters while 
simultaneously being able to generalize better than the normal Cascor training algorithm. Hence, in this paper we will 
investigate if the CasPer learning algorithm can also generalize to this complicated real word task and assist in helping 
diagnose depression correctly.  
 
1.3 Genetic Algorithms  
 
One of the difficulties with using neural network architectures is hyper parameter tuning, this includes the problem of 
feature selection. Genetic algorithms provide a framework and metaheuristic for hyper-parameter tuning and therefore 
can be used to select the features used by a neural network (O Babatune, L Armstrong, J Leng, D Diepeveen 2014). 
Genetic algorithms are inspired by biology and evolution, hence the name. An initial pool of candidate solutions are 
randomly generated and are evaluated on based on a fitness function. A crossover stage then takes strong performing 
solutions and combines them to provide offspring which then in turn can be used to create future offspring in further 
iterations. The aim is to then to find the most optimal candidate solutions over multiple generations and by breeding 
together different solutions. This can be used by neural networks for feature selection by selecting random features 
which act as the candidate solutions, then through training a neural network for each candidate solution, the strength of 
the solution can be evaluated by a fitness function which should correlate with the test accuracy of each respective 
network. Afterwards, the best performing solutions can be crossed over and mutated to provide possible solutions that 
can give better results with the end goal of finding the best combination of features for the network to use.    

 

 

 

 

 

 

 
 
 
 
 
 
 



 

 

2   Methodology 

2.1 Preprocessing 
 
The dataset used for this paper was already preprocessed as described in the dataset paper, firstly since each 

physiological signal is individual dependent the range of each signal could be vastly different from person to person. 
Therefore, all the signals were scaled between 0 and 1 scaled using each individual’s min max ranges. This 
preprocessing translated to original features presented by the dataset; however, the dataset also included several 
occurrences-based features which were not transformed, these occurrences and count based features included 
occurrences of reaching peak pupil dilation etc. and were presented as a integer numbers. Due to this the scale of this 
data was not consistent with the remaining already pre-scaled features, therefore these features were also scaled, this is 
possible due to the ordinal nature of the occurrences and the scaling preserving the ordinal information. After the 
scaling we are left with a dataset with 39 features with values ranging between 0 and 1,  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 Feature Creation 
 
The dataset only has a limited number of data points, in total with only 192 datapoints and even less when using a train 
test split. Due to the limited number of datapoints, we performed a dimensionality reduction on the data, this was done 
using principal component analysis. After transforming the data, the variance explained by the sum of the first n 
principal components was recorded and visualized in figure 1. The first 21 principal components make up for 99.38% of 
the variance of the data, therefore by discarding the remaining 18 principal components we can reduce the number of 
features from 39 to 21. The order in which we apply the data preprocessing matters, and it is paramount the test set 
receives the transformations fitted and transformed on the training set. These 21 principal components therefore then 
make up the features that we will use for feature selection.  

2.3 Neural Network Baseline 
 
 A baseline simple neural network architecture is first used to establish a baseline result, the network architecture used 
is a single fully connected hidden layer with 50 neurons and the sigmoid activation function, using the cross entropy 
loss and Adam optimizer using backpropagation. This baseline was chosen as it was the specified architecture described 
in the original dataset paper.  
 
2.4 CasPer Network for classification 
 
  The CasPer Algorithm constructs a Cascade network, the algorithm works in a training loop between training the 
network with RMPROP, adding a neuron when the training is not improving and then readjusting learning rates. The 
learning rates are adjusted based on different regions of the network, named L1, L2, and L3. L1 is made up of all 
weights connecting to the newest hidden neuron, L2 refers to all the weights connecting from the newest neuron to the 
output layer and L3 is all the remaining weights.  



 

 

 

 
 
In general, L1 >> L2, L3 (T.D. Gedeon & H.K. Treadgold, 2006), for this paper we settled on the following values of 

0.02, 0.005,0.001 which were decided on to balance between convergence and optimizing training time. The original 
CasPer paper also described a P hyperparameter which is used to describe and scale the number of training epochs 
before checking if a new neuron needs to be added. Due to the complexity of the dataset for this paper, the P value was 
chosen to be 100 which is higher than the values chosen for the toy problems in the original CasPer paper. In each 
neuron, a leaky relu was used. This is because by nature cascading networks can get quite deep which greatly amplifies 
a disappearing gradient problem prevalent when using a sigmoid activation. Due to the task being a classification task a 
SoftMax function was also applied to the output neurons.  
 
 
2.5 CasPer + Genetic Algorithm 
 
  Genetic Algorithm will also then be used for hyper parameter selection for a third test. The candidate solutions are 
represented as a 21 long length chromosome with binary encodings where the ith gene represents using (1) or not using 
(0) the ith feature, the population is initially initialized randomly. The population is set to 20 and the algorithm runs over 
100 generations with a size 3 tournament. A two-point crossover is used with 80 percent probability and a 20 percent 
mutation probability is used for a bitflip mutation. The fitness function used to evaluate each candidate solution will 
therefore be the test accuracy result after each neural network has been trained using the respective chromosome 
indicating the features to be used, hence the objective direction will be to maximize the accuracy. These 
hyperparameters were used to allow large enough sample population breeding and generational growth to occur while 
noting the limited computing resources available, due to the nature and time required for executing genetic algorithms 
with a backpropagation trained network, hyper parameter tuning for the genetic algorithm was infeasible to do.  
 
2.6 Leave one out Validation 
 
  For our dataset, the normal K-fold validation used is not sufficient due to each individual being represented by 
multiple datapoints. This means that there is correlation that exists outside the data. To account for this we use Leave 
one out validation in which the data points for one individual becomes the testing set and everyone else is used as the 
training set. We repeat for all combinations and average out to calculate the final results, this means we total to running 
an average over 12 training and test cycles.  
 
2.7 Evaluation and benchmarking 
 
  To evaluate the effectiveness of the models, we will use the multiclass precision, recall and F1-scores as evaluation 
measures. For a depression class D, the precision refers to the proportion of individuals with D that are predicted to be 
of class D. Recall refers to the percentage of individuals correctly predicted to be of D among all individuals classified 
as D. The F1 score acts as a medium between the two taking the harmonic mean of recall and precision. An overall 
score can then be calculated by taking the average over each depression level to produce a final metric to score each 
model by.  



 

 

3   Results 

As seen from figure 3 and figure 4, the simple network was not a good classifier for detecting depression levels 
achieving only a 22% accuracy which is even worse than the baseline random chance classifier of 25% given from 
having 4 evenly distributed classes. Despite most of the simple networks scores being consistently low, the big 
standouts were for moderate depression achieving only a precision of 0.12, recall of 0.06 and F1 of 0.08 which are all 
extremely low. Contrasts this with the Recall of 0.5 for Severe depression it shows that the Simple network was very 
biased towards severe depression and was completely unable to capture the information on moderate depression. 
 

   
 

 
  The standalone Casper Network did however perform better than the simple multilayer perceptron did, it ended up 
with an overall accuracy of 37.5% which shows it did perform better than random chance would in this case. The 
Casper network showed very consistent results compared to the wild varying results of the baseline simple model. In 
particular its precision score for Moderate depression was 0.5 which soars above the measly 0.06 of the Simple MLP 
Network. For almost all categories, the Casper Network proved to be a stronger classifier, by a healthy margin of 
15.5%. There are no standout deficits or strong points for Casper in classifying between the different levels showing it 
had very little bias towards a particular depression level. The results also showed the genetic algorithm CasPer network 
having very similar performance to the CasPer Network without the genetic algorithm. Almost all scores coincided 
completely within a small delta when compared to the standalone CasPer results however in almost all cases they were 
slightly slower than standalone CasPer results.  

4   Discussion 

The results demonstrated that our implementation of CasPer with and without the Genetic Algorithm and the single 
multilayer perceptron model were both quite incapable of effectively classifying and therefore diagnosing depression 
through the use of observers’ physiological signals. One of the big reasons this could possibly come from, is the wide 
distribution of the data, in particular it is possible that each individual person will have a completely different 
physiological reaction towards the same observations, hence the ability for these neural network models to generalize 
will be heavily limited. It is also possible that only using twelve people alone for the dataset, does not capture enough of 
the distribution of the general population well enough. Twelve is statistically a very small number and so the dataset 
used very well could have been biased heavily by the individuals that the models were trained on. In the future, a key 
improvement would be to use larger datasets with many more data points. Especially such that the number of datapoints 
is much larger than the dimension of our features.  
 
  The CasPer models also on average, averaged adding around 12 hidden neurons and hence layers towards the 
network architecture. This meant that the models were significantly deeper than the simple model and hence training 
time was also much longer despite still having an overall smaller number of parameters when compared to the fully 
connected 50 hidden neuron network. This problem severely limited the ability for the genetic algorithm to converge, 
genetic algorithms as a whole require large and vast amounts of training time and resources due to the large number of 
models being trained. This could possibly explain the lackluster results provided by the genetic algorithm boosted 
model, the epochs used were insufficient to truly reach a converging criterion and instead were required to be stopped 
due to the extreme computational time and resources that were not available at the time of writing of this paper.   
 
  It is therefore also very obvious that with our large networks with many parameters and limited datapoints, that the 
models themselves ended up overfitting, this can be seen by looking at the training accuracies and losses, the simple 
model during training consistently reached 100% training accuracy which is a very bright indicator for overfitting. The 
CasPer network however averaged only reaching 82% training accuracy. The drastic difference in performance between 
the train and test sets of 78% for the simple model and 44.5% for the CasPer model clearly shows the evidence of two 
major possible problems, the first being overfitting and secondly the uneven and drastically polarizing distribution of 

Figure 3  Simple Network Casper Network Casper Network + Genetic Algorithm 
No 
Depression 

Precision 0.27 0.28 0.28 
Recall 0.20 0.42 0.40 
F1 0.23 0.35 0.34 

Mild 
Depression 

Precision 0.21 0.34 0.33 
Recall 0.20 0.35 0.34 
F1 0.21 0.35 0.33 

Moderate 
Depression 

Precision 0.12 0.50 0.47 
Recall 0.06 0.28 0.31 
F1 0.08 0.39 0.39 

Severe 
Depression 

Precision 0.28 0.41 0.40 
Recall 0.5 0.43 0.45 
F1 0.36 0.42 0.42 

Figure 4 Simple Network Casper Network Casper Network + Genetic Algorithm 
Overall Accuracy 22% 37.5% 36.5% 



 

 

the data. The difference of performance between the models however does possibly show that CasPer as an algorithm 
provides a method of regularization to prevent overfitting. This could be due to the cascading property where the 
network size is only grown as needed and hence can reduce the amount of unnecessary saturated parameters. Future 
work in the space of CasPer can focus on this property.  

 
The similarities in results of the CasPer network with and without the Genetic algorithm can possibly be explained 

by several phenomena, firstly as mentioned before it is entirely possible the genetic algorithm simply did not converge. 
Increasing the generations would cause the already long training time to skyrocket, therefore, to prevent this future 
genetic algorithm attempts will and should require larger allocations of training and computational resources. Another 
possible be reason would be the preprocessing and feature extraction done using the principal component analysis, this 
may have already removed unneeded parts of the data and already condensed the features into all the information 
needed without still maintain overly large number of features. This theory is backed up by the genetic algorithm 
performing overall slightly worse than just using all 21 features. Since the genetic algorithm solution generally only 
produced solutions with less than 21 features, the features missed may have missed key important patterns and variance 
in the data. Future works could aim to perform genetic algorithm on the raw normalized features without the 
dimensionality reduction.  

 
The results of this paper are contradictory to the parent original dataset paper in which they achieved a result of 88% 

and 92% test accuracy using the simple network architecture and genetic algorithms to classify depression. The drastic 
difference in performance shows the likely possibility of a mis-implementation, very likely in the data preprocessing 
stage. Future work should focus more on understanding the differing distribution of individual observers and looking at 
differing physiological signals to classify depression.  

5   Conclusion 

  The CasPer algorithm was implemented and used on a dataset consisting of the physiological signals of observers of 
depressed people, it was found that the baseline method of a simple single 50 neuron hidden layer MLP model 
achieving 22% accuracy performed considerably worse than the CasPer algorithm at 37.5% which in turn out performed 
the combined CasPer Genetic Algorithm model which achieved an accuracy of 36.5. Despite CasPer algorithms more 
accurate classification it was still too inaccurate to provide any substantial benefit to clinical depression diagnosis.  
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