
Analysing Efficiency of Deep Multi-Task Networks Using
Distinctiveness Pruning

Jaskirat Singh1

Australian National University
Research School of Computer Science

Canberra, Australia
u7019589@anu.edu.au

Abstract. Multi-task learning refers to using a single encoder network in order to learn multiple
diverse tasks over the same dataset. The use of common features for multiple different tasks is not
only helpful in improving the generalization performance of the final model but also holds high
significance in practical deployment of such multi-task networks while using limited disk space.
The current research focused on reducing the size of multi-task models often incorporates use of
techniques like neural architecture search (NAS) in order to find the smallest possible network
size. In this paper, we instead analyse the merits of using the distinctiveness pruning strategy
[3] for network size compression in deep multi-task models, and show that it leads to consistent
performance improvements as compared to directly training a network of final compressed size.
Furthermore, we note that since the same encoded features are used for simultaneous predictions
on multiple diverse tasks, the size of the learned feature representation forms a major bottleneck for
both resulting performance and the final model size. To this end, we propose a novel distinctiveness
pruning based approach to analyse the effect of using different convolution architectures (e.g.
ResNet [4], Efficient-Net [12], NF-Net [1]) on the effective utilization of the final encoded feature
representation. Our results show that smaller networks like Efficient-Net perform on-par with
bigger networks by exhibiting increased effective utilization of the joint encoded features. Source
code is available at https://gitlab.cecs.anu.edu.au/u7019589/img-compression-vehiclex.

Keywords: Multi-task learning · Network Compression · Pruning · Vehicle-X

1 Introduction

The deployment of current deep learning models for practical computer vision applications, e.g. in
robotics or self-driving cars, requires the final network to solve multiple diverse tasks at once. For
instance, a self-driving car needs to simultaneously perform a range of visual tasks like semantic
segmentation (for detecting different pedestrians and other vehicles), per-pixel depth estimation (for
avoiding obstacles) and visual navigation (for optimal path planning) etc, all within a few-milliseconds
of time. A typical way to reduce the computation required at inference time is to use a single network
to solve multiple tasks at the same time. This approach, also known as multi-task learning, is not only
helpful in reducing inference time, but also offers additional benefits in terms of improved generalization
performance and the need for limited network size (which is important for deployment in mobile systems
with limited space).

A key requirement in multi-task learning is to design a common encoder network (Fig. 1) which solves
multiple tasks while using limited disk space. The current work in this direction, often uses techniques
like neural architecture search (NAS) in order to find the most efficient neural network design for the
encoder model [2,7,8]. While effective, neural architecture search (NAS) techniques require multiple
training runs in order to perform task-agnostic search across possible network design parameters. The
obvious disadvantage of such an approach can be seen in terms of its high training time, which highlights
the need for developing on-line / progressive techniques for reducing network size. To this end, we

https://gitlab.cecs.anu.edu.au/u7019589/img-compression-vehiclex

2 Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning

analyse the merits of using the distinctiveness pruning [3] technique in order to perform progressive
compression of the final deep multi-task model based on the online training dynamics.

Another way to reduce network size is to use a smaller but efficient encoder architecture for deep
multi-task models. For instance, recent years have seen the advent of several efficient convolutional
architectures like ResNet [4], EfficientNet [8,13], ShuffleNet [6], NFNet [1] etc, which exhibit increasingly
smaller network size without compromising on the final model performance. However, the current
literature lacks a unified approach to explain the increased efficiency of these networks and the results
are often attributed to a large-scale empirical analysis. In this paper, we use distinctiveness pruning in
order to propose a novel approach for explaining the performance of these networks. In particular, we
show that increasingly smaller networks like Efficient-Net [12] perform on-par with bigger networks
(with higher parameter count) by exhibiting increased utilization of the encoded feature representations.

To summarize the main contributions of this paper are as follows,

1. Demonstrate and analyse the effectiveness of distinctiveness pruning approach for progressive
network compression in multi-task learning.

2. Show that the incorporation of each additional task in multi-task learning leads the network to
learn increasingly diverse / non-repetitive features which increases the efficiency of the final model.

3. Propose a novel distinctiveness pruning based approach for explaining the performance of smaller
but efficient convolution architectures (e.g. EfficientNet [8,13], Xception [6], ShuffleNet [6]).

4. Show that increasingly smaller networks like Efficient-Net perform on-par with bigger networks
(with higher parameter count) by exhibiting increased utilization of the learned features.

2 Our Method: Progressive Network Compression in Multi-task Learning

Encoder

Decoder 1 Decoder 2 Decoder 3 Decoder 4

Convolution
Block

fc layer
Encoded Features

Input Image

Fig. 1. Overall Model Design for Deep Multi-task Learning.

In this section, we provide an outline for our overall approach on applying distinctiveness pruning to
multi-task models on the Vehicle-X dataset. We begin with an introduction of the overall multi-task
learning setup in Section 2.1, followed by a discussion on using hard sample mining as a means to
deal with unbalanced class data (refer Section 2.2). We then discuss our approach for performing
distinctiveness pruning in Section 2.3. Finally, we use gradient surgery / PCGrad [15] to remove negative
inter-task interference while performing network compression in multi-task learning (refer Sec. 2.4).

Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning 3

2.1 Overall Multi-task Learning Setup

We follow the traditional encoder-decoder architecture for multi-task learning [16]. The encoder network
is composed of a convolutional feature extraction network (e.g. ResNet-18) followed by a single fully
connected layer which learns a joint hidden representation H P Rh. The joint hidden representation
is then fed into multiple decoder networks to form a prediction for each of the output tasks. For the
purpose of this paper, all decoder networks are composed of a single fully connected layer which maps
the hidden feature pH P Rhq to the output prediction pYi P Rki , i “ 1, 2...nq for each task. In above, ki
is the output dimension for each task and n is the total number of tasks. Fig. 1 provides on overview of
the multi-task model design.

The final model is then trained end-to-end using a weighted combination of each of the task-specific
loss functions [16]. In particular for the Vehicle-X dataset [14], we perform multi-task learning over four
diverse classification tasks: color prediction, vehicle type identification, vehicle ID prediction and pose
estimation. The task of pose estimation is in general not a classification task. However, it is possible to
make such an equivalence for the Vehicle-X dataset, as we found that each image was captured from a
finite set of global camera poses. Thus the pose estimation task is posed as predicting the camera ID of
the camera from which a particular image was captured. Mathematically, we define the overall loss
function as,

Lmulti´task “ λcolorLcolor ` λtypeLtype ` λvehicleLvehicle ` λposeLpose (1)

where tLcolor,Ltype,Lvehicle,Lposeu and tλcolor, λtype, λvehicle, λposeu are the cross-entropy based loss
functions and weighting factors, respectively, for each of the prediction tasks.

2.2 Hard Sample Mining for Dealing with Unbalanced Class Data

An important challenge while performing multi-task learning on the Vehicle-X dataset is to deal with
the problem of unbalanced class sizes for different tasks. Now, a trivial way for dealing with class
imbalances in single task learning would be to adjust the weightage / sampling probability for each
class to be inversely proportional to the the overall class size. However, the same is not directly feasible
in multi-task learning, as we observe that each task can correspond to a different class size distribution.
For instance, we observed that the vehicle color class pink was found to only occupy „ 2.26% of the
overall training data. However, simply increasing the weightage / sampling probability of images with
pink colored vehicles would implicitly imbalance the class distribution for other tasks, like vehicle type
identification. This is because the conditional distribution P ptype | color “ pinkq is another highly
non-uniform distribution with probabilities,

P ptype | color “ pinkq « r0.35, 0.21, 0.09, 0.24, 0, 0, 0, 0.11, 0, 0, 0s (2)

Thus, we see that performing class balancing for color prediction task by increasing the weightage /
sampling probability of images with pink colored vehicles would implicitly unbalance the data against
vehicles of type sportscar which corresponds to tenth class for vehicle type identification task.

Hard sample mining. To address the above problem, we use a hard sample mining approach which
adaptively increases the weight-age of samples which are currently hard for the multi-task network. To
do this, given a batch of input data X, we rank the multi-task loss from Eq. 1 for each sample in a
descending order. The final loss is then computed as the mean over the sample-specific losses for the
hardest 70% of the batch samples.

2.3 Distinctiveness Pruning

Feature learning in neural networks can sometimes be quite redundant, often leading to learning of
similar or opposing features. To address this, we incorporate the distinctiveness pruning approach

4 Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning

[3] which removes hidden nodes from the encoder output layer based on the distinctiveness of their
output / activation patterns on the training data. In this section, we propose a generalized variation of
distinctiveness pruning proposed in [3], which allows for pruning similar / dissimilar features nodes
while ensuring a more robust behaviour to similarity thresholds pθthreshq.

Given the batch of input data X, we first pass it through the convolutional feature extractor network
to get the features Xf P RNˆd. The hidden state output activation patterns for all h hidden nodes are
then computed as,

H “ th1,h2, . . .hhu, hi P RN @i “ t1, 2 . . . ku (3)

hi “ σ
´

Xf w
p1q
i

¯

, w
p1q
i P Rd (4)

where w
p1q
i P Rd is the weight vector for the fully connected encoder layer corresponding to the ith

hidden output, and σp.q is the activation function.

We can then compute the similarity Sij between the output patterns for pair of hidden nodes i, j as,

Sij “ cos p=phi,hjqq “
hi . hj

‖hi‖ ‖hj‖
(5)

Core Idea. The main idea behind distinctiveness pruning is to use the hidden activation pattern
similarities (computed above) to remove a hidden node while ensuring similar overall output prediction
pattern for all output nodes on each task. To see this, let om

p P RN , p P t1, 2, . . . kmu be the output
prediction pattern for the pth output node for the mth task. Then,

om
p “

h
ÿ

i“1

w
p2qm
pi hi (6)

where wp2qmpi is the weight between ith hidden node to pth output node in the decoder layer for the mth

task.

Now given two hidden nodes x, y with similarity |Sxy| “ |cos p=phx,hyqq| « 1,

hy « hx cos p=phx,hyqq , assuming |hx| “ |hy| (7)

We can then write the expression for output activation pattern om
p as,

om
p “

h
ÿ

i‰tx,yu

w
p2qm
pi hi ` w

p2qm
px hx ` w

p2qm
py hy (8)

“

h
ÿ

i‰tx,yu

w
p2qm
pi hi ` w

p2qm
px hx ` w

p2qm
py cos p=phx,hyqqhx (9)

“

h
ÿ

i‰tx,yu

w
p2qm
pi hi `

´

wp2qmpx ` wp2qmpy cos p=phx,hyqq

¯

hx (10)

“

h´1
ÿ

i“1

w
p2qm2

pi hi (11)

where,

w
p2qm2

pi “

#

w
p2qm
px ` w

p2qm
py cos p=phx,hyqq if i=x

w
p2qm
pi otherwise

(12)

Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning 5

Thus, we can essentially remove the hidden node y and replace wp2qmpx with wp2qmpx `w
p2qm
py cos p=phx,hyqq,

while preserving the overall output pattern behaviour for the pruned network.

We now use the above idea in order to discuss two different pruning strategies based on similarity /
dissimilarity of the hidden pattern activations.

Similarity Pruning. Similarity pruning is performed when two hidden nodes x, y have pattern
activations in similar directions i.e. cos p=phx,hyqq « 1 or =phx,hyq P r0, θthresholds. Thus using Eq. 12,
we can remove the hidden node y while replacing wp2qmpx with,

wp2qmpx Ð wp2qmpx ` wp2qmpy cos p=phx,hyqq @p @m (13)

Note that for cos p=phx,hyqq « 1, this directly corresponds to the additive weight update rule
w
p2qm
px Ð w

p2qm
px ` w

p2qm
py from [3].

Dissimilarity Pruning. Similary, if two hidden nodes x, y have pattern activations in opposing
directions i.e. cos p=phx,hyqq « ´1 or =phx,hyq P r180´ θthreshold, 180s. Thus using Eq. 12, we can
remove the hidden node y while replacing wp2qmpx with,

wp2qmpx Ð wp2qmpx ` wp2qmpy cos p=phx,hyqq @p @m (14)

However for cos p=phx,hyqq « ´1, this correpsonds to,

wp2qmpx Ð wp2qmpx ´ wp2qmpy @p @m (15)

Note: in our experiments, we found the above rule for dissimilarity pruning to give much more robust
performance as compared to directly removing both nodes x, y.

2.4 Avoiding Negative Inter-Task Transference: PCGrad

A typical phenomenon in deep multi-task learning occurs in the form of negative transfer across tasks.
This usually happens when the increase in performance of one task causes a performance decrease for
the other. This usually occurs due to use of a small network size for the multi-task model and is often
accompanied by learning of opposing features for different tasks [11]. However, this directly presents a
problem for the dissimilarity pruning strategy outlined in Sec. 2.3, which is based on removal of hidden
nodes with opposing pattern behaviour. This can become highly undesirable especially if the reduction
in network size from pruning leads to an increased negative transfer across tasks.

To avoid this problem while performing distinctiveness pruning on multi-task networks, we adopt the
gradient surgery / PCGrad [15] approach for avoiding opposing task gradients in multi-task learning.
Given two opposing gradients gi,gj from task i, j, PCGrad updates the gradients as follows [15],

gPC
i “ gi ´

gi . gj

‖gj‖2
gj , if gi . gj ă 0 (16)

3 Dataset Analysis

The final progressive network compression framework described in Sec. 2, is deeply based on the
statistical analysis of the underlying dataset (e.g. Section 2.2 for countering class imbalance).

6 Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning

3.1 Dataset Description and Task Identification for Multi-task Learning

The vehicle-X dataset is a high-fidelty dataset consisting of total 75516 images (each provided as a 256
ˆ 256 RGB image) and is divided into train/val/test sets of sizes 45438, 14936 and 15142 respectively.
Each data point is accompanied by a set of 9 different labels, out of which 4 are categorical: (colorID,
typeID, vehicleID and cameraID), and the rest are continuous regression variables for camera height,
camera distance, lighting conditions etc.

For the purpose of this paper, we use the above mentioned four categorical variables in order to analyse
the performance of distinctiveness pruning for reducing the size of joint-encoder based deep multi-task
networks. Note that, all “string” based categorical variables were converted to their equivalent numeric
labels e.g. cameraID ’c001’ Ñ 1, cameraID ’c005’ Ñ 5 etc.

Complexity of each task in joint multi-task learning. The overall muti-task network is designed
to be of sufficiently high complexity as the final model has to use the same highly pruned feature
representation, in order to make simultaneous predictions on several diverse tasks. Another factor
affecting complexity of the involved tasks comes from fine-grain classification requirements for each task.
For instance, the vehicle identification task requires fine-grain classification into one of 1362 classes,
which poses a steep challenge since we only have limited („ 30) training images for each vehicle ID.

Note on representation for colorID. We note that the given data classifies each color as a separate
categorical variable, which does not capture the visual similarity between different color classes e.g.
yellow is closer to golden than red. Thus, ideally the target label for each color should be a continuous
RGB representation and the color prediction task should be modelled as a regression task. Nonetheless,
we found that modelling it as a classification objective helps us evaluate performance on this task with
an accuracy metric, which preserves consistent evaluation of the final multi-task network in terms of
the overall average accuracy (refer Table 1).

3.2 Highlighting Class Imbalance

A key problem with performing multi-task learning on the Vehicle-X dataset can be seen in terms of its
highly imbalanced and distinct class size distributions for different tasks. As discussed in Sec. 2.2, unlike
single task-learning, such an imbalance is hard to address with traditional loss re-weighting strategies.

Fig. 2. Highlighting class imbalance and need for hard sample mining. As shown above we find that
the given vehicleX dataset features highly class imbalance for different classification tasks. This imbalance poses
a direct challenge to the overall multi-task learning process, which highlights the need for the hard sample
mining strategy proposed in Section 2.

Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning 7

4 Training Details

Tasks. We train the deep multi-task model on four classification tasks on the Vehicle-X dataset: color
prediction, vehicle type identification, vehicle ID prediction and pose estimation. As mentioned in
Section 2.1, the pose prediction problem was adapted as a classification task by predicting the camera
ID of the camera from which a given image was captured.

Finetuning. In order to increase the speed of the training progress, we follow a finetuning procedure
where the weights of the convolutional feature block are initialized from the weights pretrained on the
Imagenet [5] dataset. Nevertheless we note that the weights of the convolutional feature block are not
kept fixed and the entire multi-task model is trained end-to-end on the Vehicle-X [14] dataset.

Preprocessing / Data Augmentation. We follow the standard image normalization procedure,

X Ð
X ´ µ

σ
(17)

where µ “ r0.485, 0.456, 0.406s, σ “ r0.229, 0.224, 0.225s are the mean and standard deviation on the
Imagenet training dataset. This is required due to the pretrained nature of network weights.

Furthermore, in order to increase the diversity of the input data distribution we perform the random
horizontal flipping and random crop based image transformations on the training dataset.

Regularization. The high parameter count of the overall deep multi-task model, makes it highly
susceptible to overfitting on the training dataset. To address this, we did two things: 1) We added a
batch normalization layer after the final fully connected layer in the encoder network, and 2) we added
an l2 regularization term (λreg “ 5ˆ 10´3) to the final overall network loss.

Hyperparameters / Pruning schedule. Unless otherwise specified, each training configuration is
ran for 20 epochs with a starting learning rate of 10´3. We use the Adam optimizer with an adaptive
learning rate schedule, where the learning rate is reduced by factor of 10 if sufficient progress is not
made over the last few epochs. The network is initialized with 128 hidden nodes for the fully connected
encoder layer. Pruning is performed in an iterative fashion in conjunction with network training at the
end of each epoch. Note that, distinctiveness pruning is only performed if their is a pair of similar /
dissimilar neurons within a threshold θthresh “ 30 degrees.

5 Experiments and Results

5.1 Using Distinctiveness Pruning for Network Compression.

In this section, we demonstrate the effectiveness of using the distinctiveness pruning approach for
progressive network compression in deep multi-task learning. We use the following training configurations
for this experiment,

Distinctiveness Pruning (D-Prune). The network is initialized with 128 hidden neurons for the
final encoder layer. The distinctiveness pruning strategy outlined in Sec. 2.3 is then used to iteratively
reduce the number of hidden nodes after every epochs using θthresh “ 30 degrees.

Baseline. Let the final number of hidden neurons (in the final encoder layer) after distinctiveness
pruning be x. We then train a vanilla deep multi-task network (without pruning) with x hidden nodes
in the encoder layer. The network is trained for 20 epochs and the final accuracy across different tasks
is compared with the performance after distinctiveness pruning.

Note that both training configurations use a ResNet-50 [4] architecture (without the final fully connected
layers) as the convolution feature extractor block for the encoder network. The convolution layer weights
are initialized from the pretrained Imagenet model, but are then finetuned on the Vehicle-X dataset.

8 Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning

Multi-Task Performance with Resnet-50 Backbone

Task D-Prune Baseline

ColorID 90.51 89.88
TypeID 76.01 72.98
VehicleID 56.44 52.89

Average 74.05 71.92

Table 1. Distinctiveness pruning for network compression. We clearly see that our framework (refer
Sec. 2) for applying distinctiveness pruning achieves higher test accuracy (for similar network compression) as
compared with the baseline model for both single / multi-task learning.

5.2 Analysing Impact of Network Architecture on Effective Feature Utilization

In this section, we analyse the impact of using different network architectures for convolution block in
the encoder network. In particular, we use network compression-ability (using distinctiveness pruning
with constant threshold θthresh “ 30)) to explain the competitive performance of smaller but efficient
network designs (e.g. EfficientNet [12]). Our results indicate that the use of more efficient network
architectures increases the effective utilization of the jointly learned features by the encoder network.

Convolution Block
Architecture

Parameter
Count (M)

Initial Hidden
Size

Final Hidden
Size

Compression
Performance (%)

Feature
Utilization (%)

EfficientNet-B0 [12] 5.29 128 109 14.84 85.16
EfficientNet-B2 [12] 9.11 128 107 16.41 83.59

ResNet-18 [4] 11.69 128 102 20.31 79.69
ResNet-50 [4] 25.56 128 93 27.33 72.67
NFNet-L0 [1] 35.07 128 80 37.51 62.49
VGG-11 [9] 132.87 128 65 46.85 53.15

Table 2. Analysing impact of different network architectures on the effective feature utilization.
We clearly see that smaller (but efficient) network architectures like EfficientNet perform on par with bigger
networks like VGG-11 by increasing the effective utilization of the encoded feature representation.

Fig. 3. Variation of minimum distinctiveness angle with training epochs We clearly see that the
learned features become increasingly diverse as the training progresses. We also observe that the feature
distinctiveness is higher for more efficient network architectures with high feature utilization (refer Table 2).

Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning 9

5.3 Analysing Relation between Compression Performance and Number of Tasks

A key claimed advantage of multi-task learning is its ability to increase the network data efficiency by
maximizing the utilization of the learned feature space. In this section, we empirically verify the validity
of the above claim by analysing the variation in maximum compression ability (using distinctiveness
pruning with constant threshold θthresh “ 30) as the number of tasks is increased.

Multi-task Performance with Resnet-50 Backbone

of Tasks Initial Hidden Size Final Hidden Size Compression
Performance (%)

Equivalent Feature
Utilization (%)

1 128 76 40.63 59.37
2 128 83 35.16 64.84
3 128 93 27.33 72.67
4 128 101 21.09 78.91

Table 3. Analysing Relation between Compression Performance and Number of Tasks. We clearly
see that an increase in number of tasks is followed by a reduction in the compress-ability of the original network,
which implies that multi-task learning helps in increasing utilization of the given feature space.

6 Conclusion and Future Work

In this paper, we analysed the merits of adopting a distinctiveness based pruning approach for reducing
network size in deep multi-task learning models. Furthermore, with the help of appropriate dataset
analysis, we highlighted the problem of class imbalance in multi-task learning and proposed a hard
sample mining based solution for dealing with the problem. We also discussed how the problem of
negative transfer among different tasks can pose a challenge in applying dissimilarity pruning for
joint-encoder based deep multi-task networks. This analysis then motivated us to use PCGrad based
gradient surgery [15] in order to reduce opposing gradients among different tasks, thus limiting the
problem of negative transfer.

Next, we proposed a generalized extension of the distinctiveness pruning approach based on extensive
mathematical analysis presented in Sec. 2.3. The proposed approach attempts to remove hidden nodes
from the final encoder layer while preserving the overall output activation pattern for each of the tasks,
and helped us identify a robust extension for applying distinctiveness pruning on pairs of hidden nodes
with opposing feature patterns. Finally, through extensive quantitative evaluation on the VehicleX
dataset we demonstrated the merits of using distinctiveness based node pruning for progressive network
compression. We also found that the maximum compression performance on a multi-task network
decreases as the number of tasks is increased. This result along with analysis from Sec. 5.3 helped us
realize the importance of using multi-task learning for improving the utilization of the learned features.

Finally, we propose a novel approach for explaining the performance of smaller but efficient network
architectures (e.g. EfficientNet[12]) based on the compress-ability of the encoded feature layer. We
thereby show that smaller networks are able to perform on-par with bigger networks (with higher
parameter count) by increasing the utilization of the joint encoded features.

Future Work. This paper raises an interesting question which might provide interesting directions
for future research in this area. First, we note that the proposed analysis in Section 5.2 assumes a
negative correlation between network compressibility (from distinctiveness pruning) and equivalent
feature utilization. That is, we argue that the number of non-distinct feature nodes (within threshold
(θthresh)) is inversely correlated with the feature utilization of the given layer. However, we also note

10 Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning

that some architectures (e.g.VGG-11) purposefully encourage less distinctive representations by using
the dropout layers. Dropout[10] randomly drops a given feature node during the training process,
which implies that using dropout encourages learning representations where any feature node when
dropped can be compensated by the remaining features. This goes against our notion of encouraging
distinctiveness to maximize feature utilization. This coupled with the results from Section 5.2 suggests
the need for discarding the dropout layers while designing high performance network architectures.

References

1. Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image recognition without
normalization. arXiv preprint arXiv:2102.06171 (2021)

2. Gao, Y., Bai, H., Jie, Z., Ma, J., Jia, K., Liu, W.: Mtl-nas: Task-agnostic neural architecture search towards
general-purpose multi-task learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 11543–11552 (2020)

3. Gedeon, T.D., Harris, D.: Progressive image compression. In: [Proceedings 1992] IJCNN
International Joint Conference on Neural Networks. vol. 4, pp. 403–407 vol.4 (1992).
https://doi.org/10.1109/IJCNN.1992.227311

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks.
Advances in neural information processing systems 25, 1097–1105 (2012)

6. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for efficient cnn architecture
design. In: Proceedings of the European conference on computer vision (ECCV). pp. 116–131 (2018)

7. Pasunuru, R., Bansal, M.: Continual and multi-task architecture search. arXiv preprint arXiv:1906.05226
(2019)

8. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing.
In: International Conference on Machine Learning. pp. 4095–4104. PMLR (2018)

9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 (2014)

10. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to
prevent neural networks from overfitting. The journal of machine learning research 15(1), 1929–1958 (2014)

11. Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., Savarese, S.: Which tasks should be learned
together in multi-task learning? In: International Conference on Machine Learning. pp. 9120–9132. PMLR
(2020)

12. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International
Conference on Machine Learning. pp. 6105–6114. PMLR (2019)

13. Tan, M., Le, Q.V.: Efficientnetv2: Smaller models and faster training. arXiv preprint arXiv:2104.00298
(2021)

14. Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T.: Simulating content consistent vehicle datasets
with attribute descent. In: ECCV (2020)

15. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning.
arXiv preprint arXiv:2001.06782 (2020)

16. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Transactions on Knowledge and Data
Engineering (2021)

https://doi.org/10.1109/IJCNN.1992.227311

	Analysing Efficiency of Deep Multi-Task Networks Using Distinctiveness Pruning

