
Convoluted Cuts:

Distinctiveness Pruning on Convolutional Kernels

George Breynard1

Research School of Computer Science1

Australian National University, Australia

Abstract. The pruning of neural networks has become increasingly important as a method of deploying usually resource-

intensive convolutional neural networks in resource-constrained real-world environments. This paper investigates the

effectiveness of distinctiveness (as a measure of similarity between two kernels) in pruning techniques for convolutional

neural networks. It does this by comparing the effectiveness of an extended distinctiveness pruning algorithm at

maintaining network functionality to that of a random pruning algorithm over ten trials. The extended distinctiveness

pruning algorithm was consistently found to outperform random pruning, on average maintaining 10% more accuracy

and performing even in some trials. This provides direction for further research into the use of distinctiveness as a

measure of similarity for pruning.

Keywords: Machine Learning, Neural Networks, Pruning, Pruning Algorithms, Distinctiveness, CNN, Emotion Detection

1 Introduction

The pruning, or systemic removal, of neurons from neural networks has become an increasingly popular focus for machine

learning research in recent years. Research activity has to an extent been driven by the necessity of deploying evermore

resource-intensive deep neural networks in resource-constrained real-world environments. Judicious and prudent pruning

has the capacity to produce smaller, less resource intensive neural networks whilst preserving a similar level of accuracy

(Blalock et al., 2020). However, creating a metric that accurately assesses the importance of a specific neuron to a

networks function is quite a challenge. Pruning is particularly relevant to the deployment of Convolutional Neural

Networks as they are on average more resource intensive to train and run than other forms of neural network (Lu et al.,

2017).

This paper seeks to extend the pruning technique of using the distinctiveness of a network’s neurons to determine which

should be pruned, introduced in Gedeon & Harris (1991) and described in Gedeon & Harris (1992), to prune the kernels

of a Convolutional Neural Network (CNN). This technique will be evaluated by comparing how a baseline network’s

functionality decays as it is pruned using this extended distinctiveness pruning technique, versus how its functionality

decays as kernels are pruned randomly.

1.1 Distinctiveness Pruning

Most automated pruning algorithms use a measure of each neuron’s importance to the overall network’s function to

assess whether any particular neuron should be pruned from the network. The distinctiveness of each neuron is one

measure that is used to compare the function of two neurons (Gedeon & Harris, 1992). To calculate distinctiveness first

an activation vector is calculated for each neuron with dimensionality equal to the number of elements in the training set.

Each component of this activation vector corresponds to the activation of that neuron after each sample from the

training set is passed through the network. The distinctiveness between neurons is then calculated as the angle between

their activation vectors. So, for activation vector u of a and activation vector v of b:

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑖𝑣𝑛𝑒𝑠𝑠(𝑎, 𝑏) =
𝑢 ∙ 𝑣

|𝑢|⌈𝑣⌉

Gedeon and Harris’ original paper on this technique proposes three classes of undesirable neurons that can be

pruned from the network based on their distinctiveness (Gedeon & Harris, 1992). Pairs of neurons with an angular

separation of less than 15°, which perform a very similar function can be pruned by removing one and adding its weight

vector to that of the remaining neuron. Pairs of neurons with an angular separation of more than 165°, which are

complementary can both be removed without further adjustment. Where the sum of the activation vectors of a group of

neurons is zero or constant, the group has no or constant effect and can be removed where the sum is zero, or

replaced by a constant bias term otherwise, after which it may be necessary to retrain the network.

1.2 Convolutional Neural Networks

CNNs are a type of deep neural network that utilize convolutional kernels to extract features from tensor inputs, commonly

3-channel RGB images (Sakib et al., 2018). Convolutional kernels are usually applied as a convolutional layer to a

network’s input. A convolutional layer is composed of multiple convolutional kernels, tensors of smaller dimension than

the input tensor, that are applied to different regions of the input tensor by calculating the corresponding dot product. As

a kernel is applied to different regions of the input tensor, the distance between which is determined by the kernel’s step

size, it generates an activation map of how similar the kernel tensor is to each of these regions.

Fig. 1. Convolutional Kernel Diagram (Baskin et al., 2017)

As the CNN learns these kernels, they allow it to detect certain features within the input tensor, such as edges in an image

tensor. CNNs commonly utilize multiple convolutional layers, pooling layers which reduce the dimension of an input

tensor, convolutional padding which helps maintain the dimension of an input tensor by padding it with zeros and linear

layers to combine these features, to produce an output. Convolutional kernels allow CNNs to better interpret complex

data and the structures that exist within it than basic neural networks that can only handle linear input.

1.3 Distinctiveness Pruning on Convolutional Neural Networks

Since originally distinctiveness pruning was designed to be applied to a basic neural network the concept of distinctiveness

needs to be extended to be applied to the convolutional kernels in a CNN. The activation vector of a kernel will be an N

dimensional vector, where N is the number of samples in the training set, and each entry of the activation vector

corresponds with the Frobenius norm of the activation map of that kernel after each sample is passed through the network.

Then the distinctiveness between kernels can be calculated as the angle between their activation vectors, similar to the

original algorithm, yielding the equation:

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝐴, 𝐵) =
〈𝑈,𝑉〉

|𝑈| |𝑉|

Where U is the activation vector of kernel A and V is the activation vector of kernel B. For the purposes of this paper

simpler conditions than those proposed by Gedeon and Harris will be used to determine which kernels to prune based on

their distinctiveness. This extended distinctiveness pruning algorithm for convolutional kernels will, each time it is called,

prune one kernel from the least distinct pair of kernels. This means the algorithm will be deterministic in the sense that

from a starting network the same kernels will always be removed in order of increasing distinctiveness, measuring the

effectiveness of using this new equation for kernel distinctiveness as a measure of a kernel’s function, rather than

extending the entire distinctiveness pruning algorithm to a class of neural network it was not designed for.

2 Method

In order to test the effectiveness of our new extended definition of distinctiveness as a measure of a kernel’s function a

baseline CNN model was first created and trained on the Static Facial Expressions in the Wild (SFEW) dataset (Abhinav

Dhall et al., 2011). Then, using the extended distinctiveness pruning algorithm for convolutional kernels detailed above,

nine kernels where progressively removed from this baseline network. The resulting network’s accuracy on the training

and test sets, consisting of 501 and 175 images respectively, were then recorded over ten trials. As a point of comparison,

a random pruning algorithm was used on a duplicate baseline network, and as nine kernels were progressively removed

the resulting network’s accuracy on the training and test sets was recorded over ten trials.

2.1 SFEW Dataset

The SFEW dataset is a collection of static frames from the Acted Facial Expression in the Wild (AFEW) dataset labelled

with one of seven expression categories (Angry, Disgust, Fear, Happy, Neutral, Sad, Surprise). These datasets attempt to

simulate real world facial expression data by labelling scenes extracted from movies. They are particularly relevant to the

task of testing CNNs as they replicate the data these networks normally work with, real-world image data. SFEW images

are in the PNG image format so were easily loaded into three channel Python PIL images which could then be converted

to [3,576,720] Pytorch tensors. This process also normalized the RGB values of these images. This three-channel

normalized image tensor was chosen to train the network on as it maintains the images data structure for CNN to analyze

unlike other preprocessing techniques such as flattening the image into a vector. The baseline neural network was trained

on a 675-sample subset of the SFEW dataset. Sample images from this dataset can be seen in Fig. 2. below.

Fig. 2. Sample images from the SFEW dataset

2.2 Baseline Neural Network

A simple CNN was implemented as a baseline to test the distinctiveness pruning algorithm for convolutional kernels on.

The baseline network’s architecture was as follows: a convolutional layer of nine [3,9,9] kernels with zero padding and

a step size of one, a max pooling layer of size nine, a convolutional layer of nine [9,9,9] kernels with zero padding and

a step size of one, a max pooling layer of size nine, a flattening layer, a linear layer of 126 neurons with the Rectified

Linear Unit (ReLU) activation function, a linear layer of 42 neurons with the ReLU activation function and an output

layer of dimension seven; see Fig. 3. This architecture was chosen because its simplicity provides a standard baseline

on which to test the extended distinctiveness pruning algorithm.

.

Fig. 3. Baseline Network Architecture

This network was then trained via backpropagation using cross entropy loss with a weight decay of 1e-4 and the Adam

optimizer with a learning rate of 1e-2 (Kingma & Ba, 2014). This training took place using minibatches of size 32 over

20 epochs. The network consistently achieved a baseline accuracy of 70-90% on the training data and 35% on the test

data with some variation due to the random nature of the network’s initialization.

2 Results

The performance of the baseline model on both the training and testing sets was measured progressively as nine kernels

were removed from the network in parallel trials: the first using extended distinctiveness and the second, random pruning

techniques. This was repeated over ten trials and the mean and standard deviation of the data calculated. These results are

tabulated in Table 1. and Table 2. below and are represented graphically in Fig. 4. and Fig 5..

Table 1. Average and Standard Deviation of the baseline CNN’s accuracy on the

test and training sets after nine neurons are progressively removed via the random

pruning algorithm over ten trials.

Kernels Pruned (#) 0 1 2 3 4 5 6 7 8 9

Accuracy on test set 28 28 26 26 24 20 20 17 21 20

Deviation on test set 5 5 4 3 4 2 4 4 3 1

Accuracy on training set 88 86 72 71 67 54 46 38 36 29

Deviation on training set 10 10 24 23 18 14 13 18 13 15

Fig. 4. Graphical Representation of results in Table 1.

Table 2. Average and Standard Deviation of the baseline CNN’s accuracy on the

test and training sets after nine neurons are progressively removed via the

distinctiveness pruning algorithm over ten trials.

Kernels Pruned (#) 0 1 2 3 4 5 6 7 8 9

Accuracy on test set 37 34 34 29 22 23 22 21 19 20

Deviation on test set 4 5 7 9 5 4 5 7 10 8

Accuracy on training set 91 81 84 73 77 56 52 54 41 41

Deviation on training set 6 15 11 26 13 25 24 24 29 29

Fig. 5. Graphical Representation of results in Table 2.

4 Discussion

The results above provide insight into how each pruning technique, random pruning and extended distinctiveness pruning,

effect the baseline network’s accuracy on both the training and test datasets. An immediate observation to be made is that

although some features remain consistent, considerable variation was recorded in the effects of each technique on the

baseline network’s performance. This may point to the significant impact a network’s initial structure has in determining

the effect the application of a pruning algorithm has on its accuracy. Another general observation that can be made is that

in general the standard deviation of results on the test data set are always lower than that on the training data set.

4.1 Comparison of Pruning Techniques

As a point of comparison, the effect of random pruning on the accuracy of the baseline network will be discussed first. It

appears that initially randomly pruning one or two kernels only results in a moderate variation in accuracy, at worst

dropping just below 80% for the training set. Then after the second kernel is pruned results seem to diverge greatly as the

standard deviation of the data increases. Finally, after five neurons are randomly pruned the deviation in trials grows

much smaller and network accuracy more consistently trends downwards.

The behavior of the extended distinctiveness pruning algorithm on network accuracy although initially appearing quite

similar to that of the random pruning algorithm differs in some important ways. The distinctiveness pruning algorithm

seems consistently to be able to prune up to two kernels without a significant effect on network accuracy, keeping the

average training accuracy above 80%. After this point accuracy slowly declines with a much greater variation in results.

Some trials maintained a high level of accuracy after nine kernels were pruned and others rapidly declined in accuracy

after the fourth kernel was pruned.

Comparing these two pruning techniques highlights interesting behaviors in each. It appears that random pruning

generally results in a much more rapid and consistent decline in network accuracy. Distinctiveness pruning on the other

hand appears to maintain a higher level of accuracy for longer and although for some networks as more kernels are pruned

the results are similar to random pruning, for others a much higher level of accuracy is maintained than was the case with

random pruning. Averaging the gap between results quantifies this difference, demonstrating that distinctiveness pruning

retains on average 10% more network functionality than random pruning.

4.1 Findings

These observations appear to support the effectiveness of using distinctiveness as a measure of similarity between kernels

as a means of optimizing network accuracy via selective pruning. Three clear trends can be drawn from these observations:

the baseline network likely started with a greater number of convolutional kernels than needed, distinctiveness pruning

maintains greater network functionality/accuracy as kernels are pruned and the effectiveness of distinctiveness pruning is

highly dependent on the initial network. Two observations support that the network started with a greater number of

kernels than needed: firstly, even random pruning could consistently remove one or two neurons without a large decrease

in network functionality meaning that a number of effectively redundant kernels were present, and secondly, the large

gap between training and test set accuracy is a likely indicator of overfitting i.e. the network being overly complex. Over

the ten trials conducted the distinctiveness pruning algorithm resulted in a much slower average decrease in network

accuracy than the random pruning algorithm as well as a much higher deviation as kernels were pruned, indicating that

some networks maintained a high level of functionality even after nine kernels were pruned. Finally, the high deviation

in the results of the distinctiveness pruning algorithm, especially as greater numbers of kernels were pruned, points to

network architecture having a high correlation with the degree of functionality maintained after pruning. This result makes

intuitive sense as some networks may be dependent on a greater/smaller number of kernels, or work may be unevenly

distributed across the network structure, and therefore different network architectures will respond differently to kernel

pruning.

5 Conclusion and Future Work

Using a simple CNN as a baseline it has been shown that the extended distinctiveness pruning algorithm for kernels

consistently outperforms a random approach to pruning, maintaining an average of 10 % more accuracy in networks it

is applied to. This result is apparent from several trials which show that the extended distinctiveness pruning algorithm

results in a much slower decay in network functionality as kernels are removed and that some networks can tolerate the

removal of many kernels and still maintain a good level of functionality. Conversely, pruning a kernel using the random

pruning algorithm consistently led to a much more rapid and uniform decrease in network functionality across all trials.

These results support the effectiveness of distinctiveness as a measure of the similarity between neurons which may

have many potential useful real-world applications, including in the pruning of deep neural networks for use in

resource-constrained environments. It must still be noted however, that experimentation was only conducted on one

CNN architecture and using a relatively small sample size of ten trials. Possible areas of future research in this field are

a more exhaustive assessment of the extended distinctiveness pruning algorithm detailed in this paper to assess its

effectiveness on a range of network architectures, and the proposal of alternate pruning algorithms which utilize

distinctiveness as a measure of a kernel’s function.

References

Baskin, C, Liss, N, Mendelson, A, Zheltonozhskii, E, “Streaming Architecture for Large-Scale Quantized Neural Networks on an

FPGA-Based Dataflow Platform”, Arvix, 2017, Accessed via https://arxiv.org/abs/1708.00052 on 31.5.21

Blalock, D, Ortiz, JJG, Frankle, J, Guttag, J, “What is the State of Neural Network Pruning?”, Arvix, 2020, Accessed

via https://arxiv.org/pdf/2003.03033.pdf on 27.4.21

Dhall, A, Goecke, R, Lucey, S, Gedeon, T, “Static Facial Expression in the Wild”, Australian National University, 2013

Accessed via https://cs.anu.edu.au/few/AFEW.html on 27.4.21

Gedeon, TD, Harris, D, “Network Reduction Techniques”, Int. Conf. on Neural Networks Methodologies and

Applications, AMSE, San Diego, 1991.

Gedeon, TD, Harris, D, “Progressive Image Compression” IJCNN International Joint Conference on Neural Networks,

Baltimore, MD, USA, 1992.

Kingma, PD, Ba, J, “Adam: A Method for Stochastic Optimization”, Arvix, 2017, Accessed via

https://arxiv.org/pdf/1412.6980.pdf on 27.4.2

Lu, Z, Swati, R, Chan, K, Porta, TL, “Modeling the Resource Requirements of Convolutional Neural Networks on Mobile Devices”,

Arvix, 2017, Accessed via https://arxiv.org/pdf/1709.09503.pdf on 31.5.21

Sakib, S, Ahmed, N, Kabir, A, Ahmed, H, “An Overview of Convolutional Neural Network: Its Architecture and Applications”, Dept.

of EEE, Independent University of Bangladesh, 2018.

https://arxiv.org/abs/1708.00052
https://arxiv.org/pdf/2003.03033.pdf%20on%2027.4.21
https://cs.anu.edu.au/few/AFEW.html%20on%2027.4.21
https://arxiv.org/pdf/1412.6980.pdf%20on%2027.4.2
https://arxiv.org/pdf/1709.09503.pdf

