
Bi-Directional Neural Networks and Genetic Algorithms for Classifying
Physiological Signals

Tom Willis, 

Research School  of  Computer  Science,  Australian  National  University,
Canberra, Australia

u6377372@anu.edu.au

Abstract. Neural Networks can be a useful tool for decision making, although trust and reliability are called into
question when we rely on technology to inform experts. This study compares the performance of a typical Neural
Network to a Bi-direction Neural Network, trained and evaluated on a dataset consisting of pupil dilation features of
an observer. The neural networks classify the severity of depression of an individual who is being watched by the
observer. We aim to show that a Bi-direction Neural Network is suitable for this task and hence could bring its
benefits to professional fields where decision tools need to be reliable. Previous work on this dataset yielded an
average accuracy of 92%. This paper’s baseline gave an accuracy of 35% while the Bi-directional Neural Network
performed at 40% accuracy.
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1   Introduction

A recent paper has demonstrated a method of diagnosing depression with reduced bias, since the method does not
rely on the patient describing their symptoms or answering questions with sincerity and honesty [1]. The researchers'
method involved capturing physiological signals expressed by observers who were watching videos of a person talking
[1]. These videos showed someone who by current depression diagnostic methods expressed from none or minimal
depression, to severe depression [1]. The researchers were able to train a classifier Neural Network on features extracted
from these physiological signals with 92% accuracy [1].

Through this method, the researchers implemented a method for diagnosing depression in a way that minimises bias
since the diagnosis is derived from unconscious physiological signals. The method also places  less demand on the
potentially unstable patient to reflect on their experiences,  instead requiring them to complete simple tasks such as
reading to a camera. This method has benefits that should be further explored.

Doctors, patients and other stakeholders require a level of trust and scrutiny in the tools that are used to diagnose
illnesses, however there is currently a lack of trust in artificial intelligence systems, presenting a barrier to overcome
before artificial intelligence could be adopted in healthcare [2]. A way to rectify this is to extract meaning from the
Neural Network models, which is seen as a way to improve the acceptability of Neural  Network [3]. In this field,
extracting  meaning  would  also  give  the  Neural  Network  the  ability  to  explain  its  diagnosis  so  that  a  medical
professional can give concrete reasons for their subsequent diagnosis.

A previously suggested Neural Network architecture that has the potential to extract meaning from Neural Network
models is called a Bi-directional Neural Network (BDNN). In a paper, researchers demonstrated this Model architecture
on two datasets, demonstrating its ability to analyse the data [4]. A Bi-directional Neural Network is a network that is
trained on data features as input and on target class values as input, meaning the network is sometimes trained in the
reverse direction [4]. This imitates the brain’s electrical synaptic transmission, where the transmission is usually bi-
directional, enabling the Neural Network to remember input patterns and output vectors [4,5,6]. By remembering both
input  patterns  and  output  vectors  the  Neural  Network  can  start  building  relationships  between  the  two,  which
consequently was demonstrated by the researchers could be used to extract meaning [4], and hence has potential to
provide medical professionals with information that supports diagnosis.

Our goal is to explore the use of a BDNN on the dataset that was used to classify patients severity of depression, to
do the same task. Through this, we will investigate how the use of a BDNN affects model performance and hence
whether such an architecture and method combination could be used to help diagnose depression and provide doctors
with the model’s reasoning. We also use Genetic Algorithms (GAs) for feature and hyperparameter selection.



This paper examines the data being used for classification, devises the structure and procedures of Neural Networks
trained for this classification task, and compares model performance between models. We conclude the paper with a
discussion of results and suggesting future work to further explore the problem.

2   Method

2.1   The Data 

The  data  was  collected  through sensors  attached  to  participants  who watched  16  videos,  each  video  of  which
depicted an individual reading a paragraph or answering a set of questions [4]. The individual depicted fit into one of
four  depression  categories  and  of  the  16  videos,  there  is  an  even  spread  of  individuals  in  all  four  categories  of
depression [4]. Of the dataset, there are 12 participants who each watched all 16 videos producing 192 patterns of data
[4].

Each participant was attached to 3 different sensors to measure 3 different physiological traits as the participants
watched the videos [4]. Features of the dataset are derived and categorized by these 3 sensors. The sensors measured:

• Galvanic Skin Response, a measure of electricity flow through the skin which is affected by the amount of
sweat on the skin [4].

• Skin Temperature, indicative of blood flow to the participants peripherals [4].
• Pupil Dilation, a measure of pupil  size which may indicate a participants response to emotional engaging

stimuli [4].

A large part of the paper which created this dataset focused on feature selection, with the goal of finding which
features most contributed to a NN’s decision. The researchers found that a NN trained on all the pupil dilation features
was marginally worse then their best model that was trained on a subset of features from all sensors [4], indicating that
most of the features that contributed to their NN’s decision were pupil dilation features. Hence, this study will only
consider pupil dilation features. Reducing the amount of features we use by choosing to use features that gave the best
results, removes a lot of the features that didn’t affect the results. By removing these features, we avoid giving the nn
information that is irrelevant, leading to a smaller NN that takes less time to train.

To further describe the data set, the first column is the participant identifier. This was used to split data based on the
participant and not used as a training feature. The second column is the observed persons depression diagnosis class,
and hence is also the target output class. The remaining columns are all pupil dilation features that serve as pattern
inputs to the Neural Networks. These features were preprocessed from signal data by the original researchers. These
features include the minimum, maximum, mean, standard deviation, variance, root mean square, means of the absolute
values of the first and second difference metrics of normalised pupillary size and average pupillary size of  the left and
right eyes [1].   A very low pass and a low pass filter were constructed and applied independently to the pupillary
dilation signal of both eyes by the original researchers [1]. Features extracted from these signals include the number and
average amplitudes of peaks and ratio of peaks between the very low pass and low pass filters [1].

Fig. 1. A box and whisker representation of a subset of features in the dataset

The value ranges of these features differ. Some are integer numbers and some are decimals close to zero. These
differing ranges could cause a neural network to learn the features at different rates. To address this, this paper further
processed the dataset through normalisation using min-max scaling.



2.2   The Baseline Method

To evaluate how well a BDNN classifier performs against a typical NN classifier on the dataset, we must first devise
this typical NN. To make this as comparable to the original depression experiment as possible, I built the NN as close to
this classifier as possible. The NN devised is fully connected with 1 hidden layer and 4 output neurons representing the
4 output classes. The model uses a sigmoid activation function which performs equally or better than the relu activation
function. This NN and all other models were trained using the Adam optimizer using back propagation. This model
used the Cross-Entropy loss function.

The study split the available training data into two, 80% of the rows for training the model and 20% of the rows for
evaluating the model. The rows are split up randomly. We split the data since the model will likely make a better
prediction on data it’s been trained on than unseen data. Making predictions on seen data would bias the evaluation
since  it  doesn’t  demonstrate  the  model’s  ability  to  generalise  and  focus  on  the  important  features.  A  model  that
generalises well will make good predictions on unseen data.

Evaluating a model involves comparing what the model predicted compared to the ground truth. Due to random initial
weight array initialisation model performance can vary. So when evaluating hyper parameters, three models are created
and evaluated. This study calculated model accuracy, precision, recall  and F1 score for each output class and then
averaged all these metrics across evaluations to get the average model accuracy, average precision, average recall, and
average F1 score. These are the same metrics calculated by the researchers who created the depression dataset. This
study also calculates the standard deviation of model prediction accuracy.

After hyper parameter tuning has completed, ten models are created and evaluated on unseen data. In order to provide
this  unseen  data  this  study  implemented  Leave-One-Participant-Out.  Leave-One-Participant-Out  removes  one
participant’s data from the training dataset and is not trained or validated on. We conduct a forward pass on this data to
evaluate the model’s performance using the previously outlined metrics.

2.3   The Experimental Method

The experimental model is an implementation of a Bidirectional Neural Network (BDNN). This type of network can
make predictions in two directions. In the forward direction we give the model a row of data and the model will predict
it’s class. In the reverseForward direction we give the model a class and the model returns a row of data that fits this
class. The BDNN completes a reverseForward pass by executing the layers and subsequently its weight matrices in
reverse order. To train a model like this we need to complete training in both directions.

To train the network completes a combination of forward and reverseForward passes. It then calculates the network’s
loss and applies the error back-propagation technique to adjust the weight matrix of the network. Deciding when the
network completes these passess and how the network calculates loss is considered to be part of hyper parameter tuning.

The different methods of training the BDNN that this study explores include:
• Method 1: complete forward and reverseForward passes on the same epoch.
• Method 2: switch the training direction after a specified number of epochs.

Losses are calculated using Mean Squared Error. Through method 1, the loss is calculated by adding the loss of both
passes together. Through method 2, the loss between forward and reverseForward passes are calculated separately.

2.4   Feature Selection Method

To  select  features  to  give  the  model  a  genetic  algorithm  (GA)  was  used.  The  GA  evaluates  a  population  over
generations of individuals that represent the dataset features used to train a model. Each model had input neurons equal
to the number of selected features.  The features used in the model were represented by a list of single bits. When
mutation occurred each bit had a random chance of flipping. Models were given an initial good set of parameters that
were  discovered  through manual  experimentation.  These hyper  parameters  were  50 hidden  neurons,  3000 training
epochs and a learning rate of 2. The GA for feature selection was run on both the NN and the BDNN. A set of features
was discovered that performed best on both model architectures. A representation of the optimal set of features can be
found in the appendix.

2.5   Hyper Parameter Selection Method

A genetic algorithm was also constructed to explore model hyper parameters and was run on both models after running
the feature selection genetic algorithm. This method was also run on the baseline model and given all features. For the



NN model the hyperparameters being explored were the number of hidden neurons, training epochs and the learning
rate. For the BDNN, the GA also explored hyper parameters related to the two different methods of training. These
hyper parameters are which training method to use, and if the second is chosen, how many epochs before a swap in
training direction. These hyper parameters were represented by a range of integers for each hyperparameter.  When
mutation occurred, each parameter had a chance of changing to another value within the range for that hyperparameter.
After finding good hyperparameters,  the feature selection GA was run again using these selected hyper parameters
however no better feature set was found.

Both genetic algorithms evaluated the models three times to retrieve their average fitness. This fitness is the validation
accuracy plus half of the train accuracy.  We use both of these accuracy's in the fitness calculation so that the algorithms
select models that learnt well on the training data and predict well on unseen data.

Table 1. Genetic Algorithm parameters

GA Parameter Value

Population Size 40

Crossover rate 0.8

Mutation rate 0.4

Crossover type Two point

Selection type Tournament of size 10

2.6   Summary

In summary, one participant's data is used for testing, the rest of the data is split into train and validation sets. Model’s
weights are initialised randomly so many models are trained and their performances averaged in order to evaluate each
architecture.  Three  model  architectures  are  created.  The  baseline  model  is  a  NN  trained  with  the  best  found
hyperparameters. Another NN and a BDNN are trained both on the best found hyperparameters and the best found
feature sets for each model. These best found hyper parameters and feature sets are found by two Genetic Algorithms.

5   Results

3.1   Performance on Normalised Data

First results this paper analyses are the results of the NN model when given normalised features. The study ran the GA
for finding Hyperparameters on this, however the best average accuracy found was 17.5% and best overall accuracy at
31.5%. This average accuracy is less than chance at 25% and less accurate than observers classification of the people
depicted in the videos at 27% [1]. Better accuracy is found with models given the non-preprocessed dataset. Henceforth,
models use the non-preprocessed dataset, the same dataset used by the original researchers.

3.2   GA Hyperparameter Results & Discussion

The best found hyperparameters discovered by the genetic algorithms are displayed in table 2.

Table 2. Hyper parameters found by genetic algorithm search

Baseline NN NN + GAs BDNN + GAs

Hidden Neurons 86 86 59

Training Epochs 3582 3582 7914

Learning Rate 2 2 2

BDNN Training Method - - Method 1 (forward and reverse
forward pass every epoch)



After the Genetic Algorithm explored the BDNN’s hyperparameters, only training method 1 appeared in the hall of
fame. This could indicate that the second method didn't make good predictions compared to the first and hence was out
performed. To confirm this, the study forced the model to use training method 2 when exploring hyperparameters. This
allows the GA to explore the second training method without being dwarfed by the first, and could find good hyper
parameters  for  training  method  2.  Although  no  such  hyper  parameters  were  found,  therefore  training  method  1
performed objectively better.

The BDNN uses less hidden neurons than the NN. This is likely shows that the two direction training of the BDNN
helps the model generalise better and learns less of the noise in the data that can only be found in one direction, leading
to less internal features being learnt and hence less neurons are required. The larger amount of training epochs is likely
due to training in two directions creates a more broad loss that takes longer to learn the internal features.

3.3   Model Performances

The three classification models were trained and evaluated on the pupil dilation physiological dataset. The accuracy,
standard deviation, precision, recall, and F1 score were all calculated and averaged for each model. These results are
shown in table 3.

Table 3.  Performance of measures for depression classifier models defined from pupil dilation physiological signals.

Depression
level

Baseline NN NN + GAs BDNN + GAs

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

None 0.28 0.28 0.27 0.59 0.78 0.66 0.57 0.40 0.43

Mild 0.67 0.23 0.32 0.22 0.20 0.33 0.20 0.18 0.19

Moderate 0.37 0.48 0.41 0.65 0.75 0.68 0.32 0.38 0.34

Severe 0.42 0.36 0.35 0.48 0.50 0.47 0.56 0.66 0.60

Average 
Accuracy

35.625 50.00 40.63

Standard 
Deviation

9.34 7.22 7.93

Of the three models the NN with GA’s made the best predictions overall achieving an average accuracy of 50%. This
model made the best predictions on the “None” and “Moderate” depression severities and the BDNN with GA’s made
the best  predictions  on the  “Severe”  class.  No model  was  particularly  good at  classifying  the  “Mild” class.  It  is
interesting to note that in the original study on this dataset, the participants were also worst at classifying the “Mild”
class  [1].  In  terms of  overall  accuracy,  the  BDNN with GA’s  on  average  suffered  a  9.37% accuracy  drop  when
compared to the NN with GA’s. This demonstrates that the BDNN model on average performs 18.74% worse than the
NN.

The baseline NN was constructed in aim of replicating the model created by researchers at the Australian National
University (ANU). The model, created by researchers at the ANU, was trained on all the pupil dilation features and
achieved an average accuracy of 92% [1]. This is the same accuracy that they achieved when combined with a genetic
algorithm [1]. In this study, we achieve worse performance across both models that replicate the work by the ANU
researchers. In contrast this study created a performance increase when the genetic algorithm is applied. 

While in this study we do not replicate the same high accuracy achieved by the ANU researchers, we do demonstrate a
potential bound in performance when comparing BDNN and NN models on this dataset. If a NN model was created
with high performance on this dataset, when the same techniques are used to create a BDNN, we can expect the BDNN
to perform approximately 20% worse. This is a large drop in performance and may demonstrate that a BDNN is not
suitable to make predictions on and for explaining its reasoning for predictions in the medical field.

5   Conclusion

This research first created a Neural Network trained on observers pupil dilation data with the goal of predicting the
depression severity of an observed individual. The Network performance falls short of the original experiment with this
similar goal showing a failure to replicate results. What this study has demonstrated is that it is possible to train a



Bidirectional Neural Network with similar but worse performance than a standard Neural Network on this depression
dataset.

6   Future Work

Due to the negative result of this study, future work with this goal should explore one of two avenues. Improving on the
methods utilised in this study, with the aim of achieving more accurate models with the BDNN performance more
comparable to a typical NN. Or by exploring further methods to make NNs more useful in the medical field such as
alternate methods of obtaining learnt neural network reasoning.
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Appendix

Optimal dataset features found by the genetic algorithm include the following feature names:

min_normalised_pupil_left,  max_normalised_pupil_left,  mean_normalised_pupil_left,  std_normalised_pupil_left,
second_diff_normalised_pupil_left_abs_mean,  lp_pd_left_peak_occurrences,  ratio_peak_occurrence_vlp_lp_left,
mean_normalised_pupil_right,  std_normalised_pupil_right,  rms_normalised_pupil_right,
second_diff_normalised_pupil_right_abs_mean,  vlp_pd_right_peak_occurrences,  lp_pd_right_peak_occurrences,
mean_normalised_pupil_avg,  var_normalised_pupil_avg,  rms_normalised_pupil_avg,
first_diff_normalised_pupil_avg_abs_mean,  vlp_pd_avg_peak_occurrences,  lp_pd_avg_peak_occurrences,
ratio_peak_occurrence_vlp_lp_avg.


