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Abstract. This paper presents the classification of overlapping datasets using two-layer neural networks, 

distinguishing data points for vertical scrolling and horizontal pagination in search engines for mobile devices. Four 

neural networks were produced using data preprocessing techniques to extract meaningful information, and using 

varying thresholds to equate false positive and false negative rates. Similarly, four genetic programming models were 

produced using the same techniques. These models underwent hyperparameter selection and K-fold cross validation 

to optimise their classification accuracy. The models had a maximum accuracy of 66.7% and a highest mean accuracy 

of 59.7%, indicating that the scrolling and pagination control types had unclear decision boundaries and did not have 

statistically significant distinctions. The preprocessing techniques increased the classification accuracies, although the 

thresholding techniques had mixed impacts. Future work includes replication studies with more data, more complex 

solution representations, and further investigation into the genetic models’ interpretable results. 
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1   Introduction 

1.1  Background 

Mobile devices are extremely common in everyday life - as of 2017, 91% of internet-connected households in Australia 

using mobile or smart phones [4]. Small optimisations of their performance and user interfaces can be vital to engage 

customers and retain user satisfaction. Kim et al. [5] have presented an analysis of users’ ease of use and satisfaction 

when using search engines with two different control types. Their study compares vertical scrolling, which involves 

users dragging a finger vertically to imitate holding and dragging a scroll bar on a desktop browser, with horizontal 

pagination, which involves users dragging a finger horizontally to imitate turning a page when reading a book. This 

study concludes that pagination increased the likelihood of users finding and examining relevant documents, and 

decreased the amount of time spent searching for relevant results. If this is correct, it has notable ramifications for the 

mobile device industry, where increased usability and search speed could cause devices designed to facilitate pagination 

to be designed. Consequently, it is paramount to verify the conclusions drawn and support either the introduction of 

pagination or the continued prevalence of vertical scrolling. 

1.2  Previous Experiment 

In this study, we present a further analysis to confirm the veracity of the conclusions drawn by Kim et al. [5]. If 

pagination provides significant improvements when compared to scrolling, it will produce significantly different results, 

so it should be possible to categorise each type separately in an unlabelled dataset with data points corresponding to 

both scrolling and pagination. To do this, we want to establish that a simple classifier is capable of distinguishing 

between these control types. This study involves the creation of a two-layer neural network to achieve this classification 

task, taking an input data point produced in the study performed by Kim et al. [5], and predicting whether it is more 

likely to be an instance of vertical scrolling or horizontal pagination. It also will consider using an evolutionary learning 

classifier to solve the same problem. 

Assuming these models are effective, an accurate ability to classify the input data supports the idea that the two types 

produce different results, and allows further comparisons to be drawn about the typical results and benefits of each type. 

For instance, providing inputs to maximise the activation of each output of the neural network will provide an 

exaggerated comparison between the types [10], and the rule produced by the evolutionary algorithm allows the 

decision boundary to be understood and implemented. On the contrary, if it is incapable of accurately classifying the 

input data, then it is unlikely that the two types produce distinct results, suggesting that there is not an objective benefit 

of using pagination over scrolling or vice versa. 



1.3  Technique Influence 

The neural network classifier has been influenced by two techniques suggested by Milne et al. [8] in their paper 

describing their approach to constructing a network to classify types of forest from geographical data. Firstly, they 

undertake extensive preprocessing of their data in order to convert it into a meaningful and interpretable form that 

allows their neural network to learn effectively. Secondly, they produce a variable threshold which allows some control 

over the ratio of false positives to false negatives. This is particularly effective in situations where false positives and 

false negatives have unequal consequences, and minimising one or the other is imperative to diminish any negative 

outcomes. Whilst the consequences of misclassifying scrolling and pagination are not severe, the concept of varying the 

classification threshold can still be applied in an attempt to increase the accuracy of the neural network. 

1.4  Genetic Programming 

Genetic programming is a type of evolutionary algorithm that mimics biological evolution in order to find the most 

appropriate representation to solve a given problem [7]. In this study, genetic programming is used to find a suitable 

classifier to distinguish between the two control types. This is done by iteratively producing generations of parse trees 

that represent an expression for the decision boundary, which is evaluated against the data before producing the next 

generation from the highest-performing expressions. This technique is particularly effective when there is not a known 

representation of the known solution, which is the case in this problem, and its ability to test a range of conditions is 

ideal for searching for such an unknown decision boundary [2]. In this study, the genetic programming model will also 

be considered with and without preprocessing, and considered with and without thresholding. 

 

In summary, this study will conclude whether it is possible to consistently distinguish between the two types, and 

hence whether the difference between scrolling or pagination in mobile search engines is significant. Crucially, this can 

be used to inform future design decisions of mobile devices and web browsers, which have wide-reaching impacts on 

their extensive range of consumers. 

2   Methodology 

In order to compare the preprocessing and variable thresholding techniques presented by Milne et al. [8], four neural 

networks were produced. This includes neural networks including and excluding both the preprocessing steps and the 

variable thresholding steps. Including a neural network with neither preprocessing nor variable thresholding acts as a 

control for comparing the other neural networks against it and verifying that the preprocessing steps taken are both 

appropriate and effective. Meanwhile, producing all four permutations of the techniques ensures that the source of any 

changes in outcomes can be known, with no doubt about which changes in implementation have produced results. 

Additionally, the production of four neural networks increases the likelihood that one of them will produce appropriate 

results to distinguish the scrolling and pagination control types, or if it is not possible, that they will corroborate this 

with each other. Each of the networks produced follow similar two-layer architectures and are trained with the same 

dataset and the same methodology. 

In a similar vein, four genetic programming models were produced, including and excluding both the preprocessing 

steps and variable thresholding steps. These act to both increase the likelihood of creating a model that can distinguish 

the control types, as well as to corroborate the absence of a clear decision boundary if none of the models can produce 

one. 

This study selects two-layer neural networks to be designed since they provide a simple mechanism for 

classification, producing reasonable results with most simple classification problems. Similarly, genetic programming 

models are investigated to determine the existence of a straightforward, interpretable classification mechanism for the 

problem. By creating eight models in total, it is likely that any decision boundary of reasonable complexity can be 

found, and the failure to find one is indicative of its likely non-existence. 

2.1  Dataset 

The dataset used throughout this report is the same as the dataset used by Kim et al. [5] in their previous study, 

consisting of the experimental results produced by their methodology. In their experiment, they successfully recorded 

the time spent on the search engine, time spent on websites, accuracy, and user satisfaction for 24 participants. This was 

done for six scrolling tests and six pagination tests, for a total of 12 data points for each participant and 288 data points 

in total. Crucially, each scrolling test has a corresponding pagination test, resulting in a balanced dataset. A description 

of each of the fields in the dataset is provided in Table 1.  



Table 1.  Data fields presented in the original dataset, with brief descriptions. 

Data Field Description 

Type Control type used – either V (vertical scrolling) or H 

(horizontal pagination) 

Target Position Rank of the search result on the search engine 

Subject Number identifying the subject 

Time to First Click Time between task start time and first click time 

Time to Right Click Time between task start time and correct click time 

Total Time on SERPs Total time spent on the search engine 

Task Completion Duration Total time spent to complete the subject’s task 

Accuracy Whether the first click was the correct website 

Satisfaction Subject’s satisfaction on the control type 

Task Start Raw time that the task started 

First Click Raw time that the first click was performed 

Right Click Raw time that the correct click was performed 

Task End Raw time that the task was completed 

Scroll Whether a scroll occurred before the first click 

Time with Wrong WebDoc Total time spent on incorrect websites 

 

From Table 1, only the “Type” data field is non-numeric, with either an “H” or a “V” denoting horizontal pagination or 

vertical scrolling respectively. “Accuracy” and “Scroll” are Boolean, with ‘1’ denoting a correct first click or a scroll, 

and ‘0’ denoting an incorrect first click or the absence of a scroll. “Target Position”, “Subject”, and “Satisfaction” are 

each represented on a constrained integer scale, with the former two representing a specific search ranking or subject, 

and the latter representing the subject’s satisfaction as self-nominated with a 7-point Likert scale. The remainder of the 

data fields contain positive but otherwise unconstrained floating point numbers, representing times or time durations. 

The “Type” column of the dataset is used as the target labels, being predicted by the models produced. Meanwhile, 

the rest of the dataset is used as the input data, which the models are trained and evaluated upon. 

It is worth noting that the dataset’s statistics provide some insight into the differences between scrolling and 

pagination. Kim et al. [5] produced results stating that pagination had shorter average time durations for each 

interaction, as well as a greater correct answer rate on the second page of results (for “Target Position” greater than 5). 

However, these were not all statistically significant, and none of them had a p-value less than 0.01, indicating that these 

differences may not always be capable of distinguishing between the two types in a simple manner. 

Another brief consideration is that of the individual subjects and their effects on the dataset. Since each subject may 

take different average amounts of time to complete their tasks, the dataset can be adjusted to prevent the influence of 

any individual subject on the classification results. Each subject’s individual statistics will be considered during the 

preprocessing stage in order to reduce their influence, in favour of unveiling the underlying trends in the data between 

control types and target positions. 

2.2  Preprocessing 

As previously mentioned, two of the four neural networks and genetic models had no preprocessing applied and 

underwent learning from the entire original dataset. The other two models of each architecture underwent extensive 

preprocessing on the dataset before training commenced. The steps involved in this preprocessing stage and their 

justifications for their use are presented in Table 2 [11]. 

 



Table 2.  Preprocessing steps and justification for each of their inclusions. 

Step Taken Justification 

Removing the “Task Start”, “First 

Click”, “Right Click”, and “Task End” 

data fields 

All information encoded in these fields is retained by 

“Time to First Click”, “Time to Right Click”, and 

“Total Time on SERPs”. 

Removing the “Task Completion 

Duration” and “Time with Wrong 

WebDoc” data fields 

The amount of time spent on correct or incorrect 

websites should have no relevant effect on the amount 

of time spent on the search engine outside of what is 

encoded by the “Accuracy” data field. 

Normalising the “Target Position” and 

“Satisfaction” data fields against all other 

data entries 

Converting all values to be between 0 and 1 allows all 

inputs to have equal effects on the network’s learning, 

and the constrained range of these fields allows 

standard normalisation to retain their meaning. 

Normalising the “Time to First Click” 

and “Total Time on SERPs” against all 

of that subjects’ other data entries 

Normalising the entries for the same subject minimises 

the effects of the subjects themselves, and retains the 

relative amount of time taken between target positions 

and control types. 

Subtracting the “Time to First Click” 

from the “Time to Right Click”, then 

normalising against all of the other data 

entries for the subject 

Taking the difference produces a measure of the time 

spent before the entry was found whilst reducing the 

repetition of the data collected. 

2.3  Neural Network Model 

The neural networks used are each two-layer neural networks trained with the standard backpropagation model. They 

consist of a linear hidden layer with a sigmoid activation function and a linear output layer that also has a sigmoid 

activation function, ultimately returning a classification likelihood between 0 and 1. This facilitates the thresholding 

process by ensuring that the neural network output is within a known range of values and can be modified to 

accommodate the threshold. Each network has two output neurons, one for each classification category, and has a 

number of input neurons corresponding to the number of input features in the dataset – 14 for the original dataset, and 7 

for the preprocessed dataset. All of the other hyperparameters were decided by iterating through various values of each, 

and selecting values with the best results for the validation set. 

Each network was trained with a number of hidden neurons in the range of 5 to 15, a learning rate between 0.05 and 

0.0005, and a number of epochs between 200 and 2000. This was iteratively decided, alternating the hyperparameter 

being changed until the network had the greatest reported accuracy from the validation set. For the two networks using 

thresholds, their values were also iteratively decided alongside the other hyperparameters, with values ranging from 0 to 

1. These were designed to balance the false positive rate with the false negative rate, which should indicate that the 

neural network cannot be improved for classification of one control type without being detrimental to the other. 

Modifications to the threshold were done by subtracting a flat coefficient from the second neural network output. These 

modifications were done throughout the training, validation, and testing procedures to train and test the network with 

the threshold incorporated. As an aside, it is appropriate and expected to use different threshold values for the two 

neural networks designed with them, instead of using the same threshold for both, since they use different datasets and 

will learn different relationships between neurons. 

2.4  Genetic Programming Model 

The genetic programming models used each produce a tree representation, with each node being formed from a set of 

primitive operations, that represents an expression for the decision boundary that distinguishes between the two control 

types. These are implemented with a strongly typed representation to ensure that all operations are performed with real 

numbers, with representations produced by this model accepting each of the real-numbered input features in a data point 

and producing a real-numbered output that is compared with the threshold to produce a classification [9]. The tree 

representation uses eight primitives: standard addition, subtraction and multiplication; standard division, but providing 

an outcome of 1 whenever the denominator is 0; negation, sine and cosine functions; and an ephemeral constant, which 

returns a random value between 0 and 1 inclusive. These are sufficient to produce a range of linear and non-linear 

expressions to represent the decision boundary – an inability to produce a reasonable decision boundary with this 

primitive set suggests that either the boundary is exceedingly complex to implement, or that a clear decision boundary 

does not exist. 

Each model undergoes evolution using an initial population of 50 individuals, each of which is a tree initialises with 

the half-and-half method, with leaves at either depth 1 or depth 2 (and not necessarily at the same depth for each leaf). 

Their fitnesses are evaluated by taking a random subset with 10% of the training samples and calculating the number of 

correct classifications produced by the individual’s expression [3]. Taking a random sample introduces more 



stochasticity and reduces the amount of overfitting to the training data, as well as decreasing the amount of computation 

required. This evaluation process also includes the threshold being considered, with the real-numbered output value 

being processed in a sigmoid function and compared to the threshold to determine the control type classification. From 

these, the model undergoes a selection tournament to select the best third of the individuals, before performing 

crossover (with a rate between 0.1 and 0.6) to exchange a single subtree between two individuals, and performing 

mutation (with a rate between 0.01 and 0.4) to replace a subtree with a random subtree produced in the same fashion as 

the initialisation process. Both crossover and mutation are constrained to a maximum tree size of 90 in order to fit 

within the requirements of Python’s stack limit. Similarly to the neural network model, each of the hyperparameters 

were decided iteratively until the greatest validation set accuracies were reported. 

2.5  Validation and Testing 

K-fold cross validation was used for validating and testing both the neural network and genetic programming 

models, allowing each model to be evaluated equally on a range of data points without a large loss of usable data. This 

involved separating the dataset into a number of subsamples and setting one set aside to be used as the testing set. The 

rest of the data was used for training and validation, performing cross-validation by using each of the remaining 

subsamples in turn as the validation set, training the model with the remainder of the data, and evaluating its 

performance with the validation set. Cross validation was done with 8 subsamples, chosen to split the dataset into equal 

groups whilst having a reasonably large number of data points in each group, so validation and testing could produce 

lower-variance results in each iteration. Once cross validation was completed and each of the models was trained and 

evaluated against their respective validation sets, the model producing the highest validation accuracy was selected and 

evaluated against the test set.  

For the neural networks, cross entropy loss was selected as the loss function, combining the softmax function with 

negative log-likelihood loss to produce a score for each class and penalise larger mispredictions to accelerate the 

learning process. The Adam optimiser function has been selected, performing gradient descent to update the neural 

network in each epoch whilst being computationally efficient and effective on a range of gradients. 

For the genetic programming models, the validation and test set evaluations were done in a similar fashion to the 

training set evaluations. This occurred by calculating the number of correct classifications performed by the model, and 

evaluates over the entire validation or test set instead of taking a random sampling from it. 

3   Results 

3.1  Hyperparameter Selection 

The hyperparameter selection process described previously was undertaken to produce four neural network 

architectures and four genetic programming models, one for each permutation of unpreprocessed against preprocessed, 

and with a varying threshold against no threshold. This was performed iteratively until the validation loss was 

minimised. The selected neural network hyperparameters are presented in Table 3, and the selected genetic 

programming hyperparameters are presented in Table 4. 

 

Table 3.  Finalised hyperparameters for each neural network produced.  

Neural Network # Hidden Neurons # Epochs Learning Rate Threshold 

Unpreprocessed,  

no threshold 

8 500 0.002 N/A 

Preprocessed,  

no threshold 

8 1500 0.001 N/A 

Unpreprocessed,  

threshold 

9 1000 0.001 0.60 

Preprocessed,  

threshold 

10 1500 0.0015 0.45 

 



Table 4.  Finalised hyperparameters for each genetic programming (GP) model produced.  

GP Model Crossover rate Mutation rate # Generations Threshold 

Unpreprocessed,  

no threshold 

0.4 0.05 300 N/A 

Preprocessed,  

no threshold 

0.4 0.05 180 N/A 

Unpreprocessed,  

threshold 

0.4 0.05 300 0.60 

Preprocessed,  

threshold 

0.4 0.1 180 0.40 

 

The neural network hyperparameter selection in Table 3 indicate that the number of hidden neurons optimising the 

network’s accuracy remains similar, despite the additional threshold hyperparameter and despite the changes to the 

dataset during the preprocessing stage. However, the greater number of epochs required for the preprocessed dataset 

and the decreased learning rate compared to the unpreprocessed dataset with no thresholding reflects the effects of 

normalising the data, with the network being trained to determine the input features with the greatest effect on 

producing an accurate classification. 

The genetic programming hyperparameter selection in Table 4 suggests that the number of generations required is 

lower for the preprocessed model than for the unpreprocessed model. This reflects the simplicity of input features 

provided by the preprocessed model, requiring less training to produce adequate results, and with subsequent training 

causing the model to undergo overfitting. The crossover rate and mutation rate remain similar between the 

preprocessing and thresholds provided, indicating that the creation of individuals occurs in a similar manner for each 

model. 

One design decision was to ensure that the varying thresholds were not set to 0.5, regardless of its accuracy – a 

threshold of 0.5 is equivalent to not using a threshold, and this acts against the purpose of this paper to judge the 

efficacy of the thresholding technique. 

3.2  Classification Accuracy 

Once the hyperparameters had been decided, each of the models was trained, validated, and tested 20 times to 

produce a set of classification accuracy statistics. The mean, maximum, and minimum classification accuracies 

produced by each of the models is reported in Table 5. 

 

Table 5.  Mean, maximum, and minimum average statistics for each neural network (NN) and genetic programming 

(GP) model.   

Model 

 

Mean accuracy Max. accuracy Min. accuracy 

Unpreprocessed NN, 

no threshold 

56.39 % 66.67 % 38.89 % 

Preprocessed NN, 

no threshold 

59.72 % 66.67 % 47.22 % 

Unpreprocessed NN, 

threshold 

56.11 % 63.89 % 50.00 % 

Preprocessed NN, 

threshold 

53.33 % 55.56 % 52.78 % 

Unpreprocessed GP, 

no threshold 

45.41% 58.33% 41.67% 

Preprocessed GP, 

no threshold 

52.78% 66.67% 30.56% 

Unpreprocessed GP, 

threshold 

51.11% 58.33% 38.89% 

Preprocessed GP, 

threshold 

52.92% 61.11% 44.44% 



4   Discussion 

4.1  Classification Efficacy 

The results provided in Table 5 indicate that all of the two-layer neural networks and the genetic programming models 

struggle to produce a model that can classify more than two-thirds of the data correctly, regardless of the different 

architectures produced. This is a reflection of the lack of distinction between the results produced by using the scrolling 

and pagination control types. 

Crucially, the presence of both false positives and false negatives in roughly equal proportions in the trained neural 

networks’ results, as the networks were designed to achieve, is indicative of the crossover in statistics between the two 

control types, with both types being misclassified as the other. Models that classify all scrolling and some pagination 

instances as scrolling, or all pagination and some scrolling instances as pagination, are effective in establishing some 

criteria that can classify data points into one type or the other. Conversely, they can help to disprove that a data point is 

likely to be produced with a certain control type. Of course, a model with minimal numbers of both false positives and 

false negatives is ideal in correctly classifying the control types. However, since none of these statements are applicable 

in this problem, none of the models designed are greatly effective at the classification task. 

Furthermore, the decision boundaries containing many terms produced by the genetic programming models indicate 

that an effective decision boundary is unlikely to exist using this primitive set in this problem. Since the evolutionary 

approach taken can produce a linear or non-linear classifier of almost arbitrary complexity from the operators in the 

primitive set (only constrained by the maximum tree size), this supports the conclusion that a decision boundary does 

not exist and the two control types are not sufficiently different to be distinguishable. 

4.2  Comparisons Between Models and with Previous Research 

In terms of the mean results, the neural network models perform slightly better than the genetic programming models 

for each of the permutations of preprocessing and thresholding. With the lack of interpretability from the neural 

networks, it is difficult to precisely identify the reasoning for their higher performance. One possible reason for this 

difference is the complexity of the problem causing a solution to require significant interconnection of the inputs, which 

the neural network model does by design whilst the genetic programming approach requires the tree model to explicitly 

incorporate each of the inputs together in a meaningful way [2]. Another potential reason is the need for primitive 

operations and coefficients outside of the evolutionary models’ primitive sets to be applied, limiting the efficacy of 

these models to be the closest approximation of these functions, whereas the neural network would be able to determine 

these exactly [7]. 

One benefit of the genetic programming model, however, is its interpretability. Whilst the neural network model 

takes a black box approach, where the outputs are produced from the inputs in a way that is difficult to interpret by a 

reader, the genetic programming model produces individuals that represent expressions which can be retrieved from 

their parse trees [3]. This allows an audience to determine the key features for classifying the data samples into each 

control type, allowing them to understand why any particular classification decision occurred. Furthermore, this study 

could be extended to monitor the evolution of the most effective individuals during the training period, or to develop 

further representations of the decision boundary that may produce more accurate classification results. 

 

When comparing the neural networks that use the preprocessed data against the networks that use the unmodified 

dataset, the network that has been trained with the preprocessed data and no threshold – or equivalently, a threshold of 

0.5 – has the greatest classification accuracy on average and at a maximum. Similarly, the genetic programming models 

that use the preprocessed data have a greater mean classification accuracy than those using the unpreprocessed data. 

This suggests that the preprocessing steps included do indeed increase the efficacy of the model, causing more data 

points to be classified correctly. This success comes from two mechanisms: removal of superfluous data fields, and 

extraction of meaning from data points. 

By removing the fields whose meaning is not relevant to the classification outcome, such as the “Task Completion 

Duration” field, the models reduce the influence of noise during training and provide more scope for the neurons (in 

neural networks) or individuals (in genetic programming) to be trained on meaningful data. Furthermore, reducing the 

number of input features during preprocessing allows fewer neural network connections to be calculated each pass, 

increasing the computational efficiency and allowing more epochs or more iterations to be considered within the same 

timeframe. For genetic programming, reducing the number of input features restricts the number of potential nodes that 

can be included in the parse trees, reducing the number of generations required before convergence occurs. 

Extracting meaningful information from the dataset is also key to producing meaningful results. For instance, 

normalising the data fields corresponding to time durations can cause the entire data field to be distorted if a single 

outlier affects the normalisation process. By normalising the data fields corresponding to time durations for each 

subject, the effects of differences between subjects, such as variations in their search engine experience or tendencies to 

be fully informed before making a click, are minimised. This allows the general usage of scrolling and pagination in 

comparison to each other to be explicitly learnt. 



This is reminiscent of the encoding techniques used by Milne et al. [8], converting the data into a form that clarifies 

the information being provided. This enables the neural network to undergo learning with the most meaningful 

information and removing the impact of noise, producing more accurate outputs in less time. 

 

There are mixed results from comparing the models using thresholds against those without thresholds. Both of the 

neural networks trained with thresholds had lower maximum accuracies and greater minimum accuracies than their 

corresponding networks trained without thresholds. This suggests that designing the thresholds to balance the ratio of 

false positives and false negatives reduces the variance of the classification outcomes, with fewer outstandingly good or 

bad classifier models. This makes sense intuitively – the number of data points belonging to each class in the training 

and validation sets has less influence over the outcome when the ratios are balanced. 

Both of the genetic programming models trained with thresholds had slightly higher mean accuracies than their 

counterparts without thresholds being applied. This is somewhat surprising – since the representations are fully learnt 

by the evolutionary approach, it would make sense if the threshold did not affect the classification results. However, the 

difference in threshold may have some effect on the parse tree formulation, with some thresholds being more suitable to 

the limited expressions that are able to be produced by the evolutionary models. To test whether this is the case, this 

study could be extended to include learnt coefficients for each of the nodes, reducing any bias from differing numerical 

values being produced for each expression and allowing the relationships between operations and input features to be 

fully learnt. 

Interestingly, the preprocessed network with thresholding has lower average and maximum accuracies in comparison 

to the network without thresholding being applied. This suggests that the accuracy is maximised for the preprocessed 

network when the threshold is set to 0.5, and the classification outputs remain unmodified. From this, we can gather that 

thresholding is not effective in increasing the classification accuracy with this preprocessed data. One possible reason 

for this is the significant statistical similarities between the scrolling and pagination data entries, causing it to be 

difficult to define a threshold that separates them. Furthermore, since it is more imperative to balance the number of 

false positives and false negatives rather than reducing one in favour of the other, the alternative use of thresholding to 

reduce the number of false positives or the number of false negatives is not necessary in this usage case. 

 

The final relevant comparison is between the results produced by these models and the results stated in the paper 

written by Kim et al. [5], where they conclude that the horizontal pagination control type has advantages over the 

vertical scrolling type. The models produced in this study cannot produce results indicating that one control type is 

better than the other, or even significantly distinguishing the two groups with a likelihood much better than random 

choice. This is contradictory to the paper’s conclusions; in particular, it states that participants using pagination had 

several distinguishing outcomes from those using scrolling, such as being “more likely to find relevant documents”, 

spending “more time attending to relevant results”, and being “faster to click” [5]. It is intuitive that, if these statements 

were significantly true, the classifiers could use these heuristics to distinguish the two control types. The classifiers’ 

inability to distinguish these control types suggests that the conclusion drawn in their study does not have a strong basis, 

and further examination would be required to draw a conclusion either for or against the use of horizontal pagination. 

4.3  Limitations and Future Work 

There are a number of limitations in the work presented in this study. Firstly, the rigid use of a two-layer neural 

network and the use of evolutionary models with a defined set of operators restricts the production of arbitrarily 

complex classifiers. Whilst this also limits the amount of overfitting that is possible, it may limit the models’ ability to 

perform classification on the overlapping datasets without producing many misclassified points. Secondly, the limited 

amount of training data is restrictive to the ability to train the neural network. Even with 288 data points, there are only 

24 data points for each control type and target position combination for the neural network to learn with. This also 

increases the influence of outliers or trends in the data that may not truly exist with larger amounts of accurate data, 

such as variations in the correct click rate. Although it may sound feasible to artificially produce more data points by 

adding random noise to the existing samples, the low variance between the two control types suggests that this may 

introduce too much bias to produce meaningful results. Finally, despite the inclusion of genetic programming 

techniques, the problem of interpretability still remains to an extent [3]. While it is possible to extract the expressions 

produced during the learning process, it is difficult to understand why these have been selected or understand the 

meaningful relationships between the input features. This makes it challenging to extend this learning process to 

manually produce a more effective decision boundary from these expressions. 

 

In order to remedy some of these limitations, several adaptations to the methodology presented in this paper are 

possible. Firstly, the use of deep neural networks with a greater number of layers can increase the complexity of the 

classification boundaries in order to produce arbitrary complex decision regions, potentially increasing the accuracy of 

classifications. This could be particularly effective by applying a convolutional neural network to an extended dataset 

from the experiment, such as time-series data including when each of the users’ actions occurred, so that the network 

could more effectively equate the resultant data with the control types that caused them. Alternatively, the use of other 

encoding techniques to produce classification outputs could be considered, such as using fuzzy logic to classify the 

outputs into a larger range of classes, such as likelihood to be an example of each of the control types. This would 



provide further efficacy from the thresholding technique, which is designed to produce results for multi-class 

classification [6]. The last alternative to increase the decision boundary complexity would be to add more primitive 

operators to the genetic programming models, although this is unlikely to incorporate as much additional complexity as 

creating a separate model. 

Secondly, an increased amount of data points would be beneficial to reduce the effects of noise and outliers 

throughout the dataset. This could be achieved by replicating the original experiment with more subjects, corroborating 

any trends that may already exist and reducing the influence of each individual subject’s data. Again, another alternative 

would be to extend the dataset by recording and analysing time-series data, such as when each action occurred. 

Thirdly, another method of classification such as machine learning or statistical analysis could be used to produce 

interpretable results, similar to those produced by the evolutionary algorithms, as well as being fully replicable [1]. This 

could also be done by manually extending the expressions produced from the genetic programming models to create a 

fully-defined algorithm to improve the classification accuracy. Since the models considered in this study produce 

interpretable expressions that relate the input features and the classifications, it may be possible to create a problem-

specific expression to improve upon these classifications. Producing an interpretable classification model would be 

important if a transparent model was required for an audience to confirm the efficacy and outcomes of the process, for 

instance when performing critical decision-making tasks. 

 

Finally, further outcomes from the paper written by Kim et al. [5] could be analysed. This could include an analysis 

of the typical results of each control type by designing input features to the neural networks that maximise the output of 

each classification output, or designing new models to draw other conclusions from the dataset and determine the 

veracity of their other hypotheses. 

5   Conclusion 

This paper has discussed the capacity of neural networks and genetic algorithms to classify data points from two 

overlapping decision regions, using data from an experiment comparing vertical scrolling and horizontal pagination in a 

mobile search engine [5]. This concluded with four neural networks and four genetic programming models being 

designed, comparing the efficacy of preprocessing input data and producing variable thresholds using techniques 

suggested by Milne et al. [8]. The preprocessing stage was successfully used to improve the classification accuracy of 

both approaches by minimising the amount of superfluous data and providing dataset-specific techniques to extract 

meaningful information. The thresholding stage reduced the variation between the reported accuracies of the neural 

network, and provided an increase to the average classification accuracy for the genetic models (but not the neural 

network models). 

The models produced in this paper were not successful in distinguishing the data points retrieved from the scrolling 

and pagination tests, with only a 66.7% maximum accuracy and 59.7% average accuracy. This suggests that the 

conclusions drawn by Kim et al. [5] are not statistically significant, an outcome supported by the statistical analysis on 

the data that they have provided. However, this is impacted by the limitations of the models designed in this report, such 

as the inflexibility of the models being produced and the limited amount of data being available from this experiment. 

Future work has also been recommended, including producing a deep neural network architecture with increased 

complexity, producing more data for the models to undergo learning with, and extending the interpretability of the 

genetic programming models to provide an effective and transparent tool to perform classification. These can all be 

useful in optimising and justifying the use or non-use of pagination in mobile search engines, which may be a critical 

consideration for developers involved in the current abundance of mobile devices in the market. 
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