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Abstract. We can recognize people suffering from depression and neural networks (NNs) also have this ability by
analyzing people’s physiological features when they observe depressed individuals. 12 people’s physiological
features, from the Depression Recognition Challenge (AVEC 2014) dataset, were used to train and test our neural
network models. One of our models, without the GIS technique, could reach 35% for overall accuracy. Then, we
compared performances of models with and without the GIS technique, and found the technique made overall
accuracy worse. Besides, we found that for the model without GIS, this model could not generalize well on the
testing set. To alleviate overfitting, we utilized genetic algorithm (GA) to select an optimal subset of physiological
features and overall accuracy reached 47%. Eventually, after optimizing features, we also employed GA to optimize
learning rates and final overall accuracy reached 49%, but this value was less than that of another research paper.
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1 Introduction

Depression is a type of mood disorder, and it is common among adults, particularly those who frequently suffer from
high pressure. It is sometimes related to feelings such as sadness, anger, loss of interest and passion. Depression can
affect some chronic health conditions such as cardiovascular disease and cancer [1]. These conditions may be worse
when patients gradually become depressed. In consequence, it is crucial to effectively diagnose and cure people who are
negatively influenced by depression so that patients can have a high-quality life.

Normally, diagnosis of depressed patients is mainly based on some questionnaires which are often filled in by these
patients [2]. To be honest, this process is not objective and sometimes wastes a large amount of valuable time.
Furthermore, as depressed patients tend to take a negative attitude towards their daily life, they are unwilling to reveal
their real mental states [3]. Consequently, current methods of diagnosis are not convincing enough most of the time and
it is significant to find a more objective way of diagnosing depression.

Recent advances made it possible to diagnose depression based on some physiological features of individuals such as
Galvanic Skin Response (GSR) [4]. These features can be more measurable and quantitative than people’s mental states
or feelings. If neural networks are applied on these physiological features, a more objective diagnosis of depression
could be obtained.

Our goal here is to employ some features of observers to recognize levels of depression of real patients whom these
observers watch. We used NNs to identify levels of depression based on observers’ response to some other people’s
depression. Besides, we combined NNs with some other techniques, such as GIS [5] and compared performances of
NNs with and without the GIS technique. In addition, to alleviate the issue of overfitting, we utilized some algorithms,
such as GA [6], to choose which features could assist the neural network model in obtaining better generalization
performances. Eventually, as the learning rate is an extremely crucial hyperparameter when configuring our neural
network models [7], it is necessary to optimize the learning rate of our model which has been optimized in terms of
input features.

2 Method

2.1 The Dataset
The dataset we employed in this paper is from the Depression Recognition Challenge (AVEC 2014) dataset [8]. The
dataset was from 12 participants including 6 males and 6 females. The range of participants’ age is from 18 to 27 with
the average age being 21.1 and the standard deviation being 2.8. These people have the almost normal vision and
hearing [4].

The dataset we used contains 192 data points and 85 features in total which can be divided into three parts. These
three parts are galvanic skin response (GSR), skin temperature (ST) and pupillary dilation (PD) [8]. Moreover, the three
parts include 23, 39 and 23 features respectively. To be specific, GSR evaluates a person’s electricity flow through this
person’s skin and this value is affected by how much sweat a person has on the skin [9]. ST is negatively influenced by
some bad emotions of people, for example if people feel stressful, values of their ST are more likely to get lower than
the values when they feel delighted [10]. PD is the representation of people’s mental activities [11]. Furthermore, there
are four levels of depression, including “None”, “Mild”, “Moderate” and “Severe”. “None” denotes no or minimal
depression; “Mild”, “Moderate” and “Severe” indicate that depressed individuals suffer from mild, moderate and severe
levels of depression respectively. In the dataset, the distribution of “None”, “Mild”, “Moderate” and “Severe” was
shown in Fig. 1.



Fig. 1. Distribution of different levels of depression in the dataset

From Fig. 1, we can find that the distribution of various depression levels is well-balanced and each level has 48 data
points. That means each level of depression has the same distribution.

Apart from depression levels, features of GSR include minimum, maximum, mean normalized GSR as well as some
filtered GSR. Features of ST include minimum, maximum, mean normalized skin temperature and several filtered
temperatures. For PD, some of features can be divided into left and right two parts.

2.2 Preprocessing
When we look through the dataset used in this paper, the range of different features is so wide that if we do not perform
normalization on these features, results of our models are less likely to be robust [12]. On the dataset, we can find that
the maximum value for features can reach 65, but the minimum value closes to zero. Apart from that reason,
normalization can also assist our models in speeding up training [12], which saves a larger amount of time.
Consequently, we normalized all features employed and to find which method of normalization could have better
performances, we tested two ways of normalization. One was that values of a feature were firstly subtracted by the
mean of the values and then divided by the variance. This way makes the mean close to zero. Another one was that
values of a feature were firstly subtracted by the minimum value and then divided by the range of original values. After
testing many times, we found that the second method could assist models in generalizing well on the testing set.
Consequently, we eventually adopted the second way of normalization.

The whole dataset was split into three parts. The first part was used as the training set, and it accounted for 70% of
the whole dataset. Then, 10% data belonged to validation set and the remaining 20% was assigned to the testing set.
Training set and validation set were used when we utilized GA to optimize the input features and learning rates. Besides,
training set and testing set were used when we train and test our neural network models.

2.3 Neural Networks
As we have few data points, the network topology needs a small number of parameters in order to avoid overfitting.
Furthermore, the network topology is a fully connected network since this network has been applied to identify
depression levels [4]. We confirmed the numbers of input neurons and output neurons. Then we needed to decide how
many hidden layers we required and for each hidden layer, we should also determine the number of hidden layer
neurons. To confirm these hyperparameters, we tested some different combinations and finally we realized that due to
small number data points, we should make the number of hidden layers to the minimum value. Therefore, the neural
network model we employed for this task is a three-layer network with a 4 nodes output layer which represents four
different levels of depression. Apart from that, we also tested various numbers of hidden nodes from 10 to 100 with
every 10 nodes. After that, we found that when the number of hidden nodes was 60, overall accuracy on the test dataset
was optimal. In consequence, we selected 60 as the number of hidden nodes.

Another significant hyperparameter was the learning rate of the network model. This hyperparameter is so crucial
that it greatly influences the generalization performance [7]. Consequently, based on my experience, I firstly chose a
common value (0.01) for the learning rate of our models. Then, we employed GA to optimize this hyperparameter to
obtain an optimal value so that our models can have better overall accuracy. Eventually, after tests were taken, 0.027
was the best value for the learning rate of our models.

For the optimizer of this network, we tested several types of optimizers with various parameters respectively, such as
Adadelta [13], Adam [14] and Adagrad [15]. Parameters included different values of weight decay. After testing these
optimizers, we realized that when we employed Adam as the optimizer and weight decay was set to zero, the average
performance was optimal on the testing set. For this reason, we chose Adam as the optimizer of our models.

In order to avoid overfitting, apart from selecting simple model, we also tested some other methods, such as early
stopping, using regularization and dropouts. After tests of some combinations of the above methods were taken, we
found that overall accuracy was optimal when we utilized early stopping and made the network randomly drop features
which came into the hidden layer with a 50% probability in each training epoch.

2.4 Evaluation Measures
We employed precision, recall and F1-score as ways of measuring performances for network models. For a level, the
precision is the number of correct predictions divided by the number of predictions for this level; the recall means that,
for this level, the number of correct predictions divided by the number of data points whose targets are this level; the
F1-score is calculated by 2＊(Precision＊Recall)／(Precision＋Recall) [4].



As a multiclass classification task, we also averaged evaluation measures so that we could have a better
generalization performance. In addition, we calculated overall accuracy in order to measure the whole performance.
Overall accuracy is computed by the sum of correct predictions for all levels divided by the number of data points [4].

2.5 The GIS Technique
According to [5], we know that, for a classification task, if we change the values of threshold, it is likely to adjust the
numbers of false positive and false negative classifications so that we may adjust values of precision and recall to obtain
a better overall performance. The paper [5] applied this technique on the binary classification tasks. In this paper, the
GIS technique was used for the multiclass classification task.

For this task, there are four different levels of depression; hence, we added a fixed value to the probability of every
level of the task. To find optimal values of thresholds, we varied each threshold from 0.4 to 0.7, and tested values on
both the training set and testing set.

2.6 Genetic Algorithm
A typical GA contains five phases including initialization, selection, crossover, mutation as well as calculating fitness
function [16]. We used GA to choose which combination of the original 85 features from GSR, ST and PD could get a
better performance for overall accuracy. After optimizing input features, GA also assisted our model in selecting an
optimal learning rate.

For the initialization phase, we normally initialize a population of randomly generated individuals. To be specific,
when GA was applied to features, the length of every chromosome was set to 85 which indicated the number of features
the dataset had. The order of features in a chromosome was the same as that in the training set. Besides, each
chromosome was represented in binary as a list of “False” and “True” [17]. We utilized “True” to indicate that a
chromosome used the corresponding feature and “False” to represent that a chromosome did not contain the feature. In
addition, the initial population employed different combinations of the 85 features which means the corresponding lists
are likely different from each other. Moreover, when we used GA to select an optimal learning rate, the value of the
learning rate for neural networks is normally set to between 0.0 and 1.0 [7]. In consequence, the length of every
chromosome was set to 14 so that we could partition 1.0 into 214 parts. As a result, the resolution could be lower than
0.0001 and we were likely to obtain an appropriate value. In this case, each chromosome was represented in binary as a
list of 0s and 1s [17]. Specifically, for a chromosome “00000010101011”, if we convert it from binary counting into
decimal counting, the result is (1 / (214) * 171) ≈ 0.0104.

In GA, selection phase includes a few methods such as the roulette wheel selection, tournament selection and elitism
selection [18]. In this paper, we tested the roulette wheel selection and elitism selection. When we compared the
average performances of these two selection methods, we found that the elitism selection could assist our models in
obtaining better results. In consequence, we chose the elitism selection for optimizing both input features and learning
rates. Furthermore, we set overall accuracy on the testing set as the fitness function of GA. All parameters of GA are
shown in TABLE 1 [4].

Table 1. Parameters of GA

GA parameter Value
GA for features GA for learning rates

Length of chromosome 85 14
Population size 20 20
Crossover rate 0.8 0.8
Mutation rate 1 / (length of chromosome) 1 / (length of chromosome)
Selection type Stochastic uniform selection Stochastic uniform selection
Mutation type Uniform mutation Uniform mutation
Crossover type Uniform crossover Uniform crossover

3 Results and Discussion

Based on the AVEC 2014 dataset, two models were tested; one is the fully connected network without the GIS
technique and the other one is a network with the technique. Features which were used for testing were the same as 85
features of GSR, ST as well as PD. Each model was run 10 times and we averaged results of 10 times. The average
performances on the training set and testing set are shown in TABLE 2 and TABLE 3.

Table 2. Performance measures for depression detection on the training set with and without GIS

Depression level NN NN+GIS
Precision Recall F1 score Precision Recall F1 score

None 0.87 0.88 0.87 0.87 0.91 0.89
Mild 0.87 0.85 0.86 0.92 0.89 0.90
Moderate 0.87 0.88 0.87 0.91 0.87 0.89
Severe 0.87 0.86 0.86 0.87 0.91 0.89
Average 0.87 0.87 0.87 0.89 0.89 0.89
Overall Accuracy 0.87 0.89



Table 3. Performance measures for depression detection on the testing set with and without GIS

Depression level NN NN+GIS
Precision Recall F1 score Precision Recall F1 score

None 0.35 0.35 0.35 0.26 0.08 0.12
Mild 0.40 0.24 0.30 0.26 0.08 0.12
Moderate 0.27 0.24 0.25 0.28 0.49 0.36
Severe 0.39 0.59 0.47 0.26 0.44 0.32
Average 0.35 0.35 0.35 0.26 0.27 0.27
Overall Accuracy 0.35 0.27

From TABLE 2, for the training set, when the GIS technique was applied to the NN, changes in the average
performances of the precision, recall and the F1 score were moderately different among four depression levels. To be
specific, for the “None” level, the technique had more influence on the average recall than the precision and the F1
score by increasing approximately 3%. There was also a slight increase in the F1 score. By contrast, the change in the
average precision was insignificant between two models. The similar trend could be seen in the “Severe” level. The
only difference was that the amount of increase was more. However, the average precision increased with 5% and 4% in
the “Mild” and “Moderate” levels respectively. In summary, the average precision, recall and the F1 score were
augmented after applied the GIS technique on the training set.

From TABLE 3, compared with the training set, there was an opposite trend for the testing set. There were different
degrees of reduction among the three evaluation measures after the GIS technique was applied. Specifically, the
network without the GIS had higher values in the average precision, recall and the F1 score than the one with the
technique. Unlike the training set, the “None”, “Mild” and “Severe” levels had the almost same trend except the degrees
of reduction. However, almost all three measures experienced significant increase in the “Moderate” level. Furthermore,
the average recall increased approximately 25% in the “Moderate” level. In summary, the GIS technique could not
optimize the performances of this classification task.

Compared with performances of the training set, the results on the testing set drop significantly which indicates that
overfitting existed. After analyzing the dataset, we found one problem could be that in comparison with the number of
features used for this task, the number of data points was relatively few. However, it is difficult for us to augment the
number of data points. For this reason, we needed to remove some features which were likely to contain redundant
information. Then, we should decide which features had to be removed. To solve this problem, we employed GA since
this algorithm has been utilized to choose features [10].

Over some iterations, GA found an optimal solution and the comparison among the NN without GIS, the result
derived from NN+GA and the result from [4] is shown in TABLE 4.

Table 4. Performance measures for depression detection among three models

Depression level NN NN+GA NN+GA (reference)
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

None 0.35 0.35 0.35 0.43 0.20 0.27 0.92 0.95 0.94
Mild 0.40 0.24 0.30 0.25 0.73 0.37 0.93 0.89 0.91
Moderate 0.27 0.24 0.25 0.44 0.77 0.56 0.88 0.90 0.89
Severe 0.39 0.59 0.47 0.90 0.09 0.17 0.95 0.95 0.95
Average 0.35 0.35 0.35 0.51 0.45 0.47 0.92 0.92 0.92
Overall Accuracy 0.35 0.47 0.92

From TABLE 4, when GA was applied to the NN, changes in the average performances of the precision, recall and
the F1 score were various among four depression levels. Specifically, for the “None” level, after applied GA, the
average recall and the F1 score moderately decreased with 15% and 8% respectively, but the precision experienced a
slight increase at the same time. In addition, the “Severe” level had witnessed a similar trend and the only difference
was that the amount of change in the “Severe” level was more than that in the “None” level. By contrast, the opposite
trend could be seen in the “Mild” level. However, all three evaluation measures of the “Moderate” level significantly
augmented after combined with GA. In summary, overall accuracy considerably increased from 35% to 47% by
employing GA and this algorithm truly optimized the performances of our models.

However, compared with the result from [4], almost all evaluation measures of the NN+GA model were relatively
low. The closest values were the average precision of the “Severe” level with 95% and 90% respectively. After
analyzing the results, we realized that one reason why difference between the two results was obvious could be that
features selected by our GA were not an optimal subset of the original 85 features. Hence, our next work includes
finding a more appropriate combination of the 85 features.

After we confirmed the numbers of input neurons, hidden neurons and output neurons, another vital hyperparameter,
which should be optimized, is the learning rate of our models. To achieve this target, we also adopted GA to find a
relatively optimal value for the learning rate. Over some iterations, GA found an optimal solution and the comparison
among the NN with the learning rate being 0.01, the result derived from NN+GA and the result from [4] is shown in
TABLE 5.



Table 5. Performance measures for depression detection among three models

Depression level NN+GA (Learning rate=0.01) NN+GA (Learning rate=0.027) NN+GA (reference)
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

None 0.43 0.20 0.27 0.55 0.38 0.45 0.92 0.95 0.94
Mild 0.25 0.73 0.37 0.51 0.35 0.41 0.93 0.89 0.91
Moderate 0.44 0.77 0.56 0.43 0.63 0.51 0.88 0.90 0.89
Severe 0.90 0.09 0.17 0.51 0.62 0.57 0.95 0.95 0.95
Average 0.51 0.45 0.47 0.50 0.50 0.49 0.92 0.92 0.92
Overall Accuracy 0.47 0.49 0.92

From TABLE 5, when the new learning rate was applied to our model, changes in the average performances of the
precision, recall and the F1 score were different among four depression levels. To be specific, for the “None” level,
after updated the learning rate, the average recall and the F1 score significantly decreased with 26% and 9%
respectively, but the precision witnessed a slight increase at the same time. Further, the “Mild” level had experienced a
similar trend and the only difference was that the amount of change in the “Severe” level was slightly less than that in
the “None” level. In comparison to the above two levels, the opposite trend could be seen in the “Moderate” level.
However, all three evaluation measures of the “Severe” level dramatically augmented after optimizing the learning rate.
In summary, overall accuracy slightly increased from 47% to 49% by employing the new learning rate and the change
of this hyperparameter truly made an impact on the performances of our model.

Nevertheless, in comparison with the result from [4], all evaluation measures of the NN+GA model were relatively
low. The closest values were the average recall of the “Moderate” level with 63% and 90% respectively. After
analyzing the results, we realized that apart from the reason that features selected by our GA were not an optimal subset
of the original 85 features, another reason could be the value of the learning rate (0.027) was a local minimum instead
of the global minimum. Consequently, our next work includes finding a more appropriate learning rate for our neural
network model.

4 Conclusion and Future Work

We have employed physiological features from observers to discern various levels of depression on the training and
testing sets. We applied neural networks with and without the GIS technique, as well as network with GA to the
features and the learning rate. The network with the GIS produced the worst overall performances on the testing set. By
contrast, after input neurons were optimized by GA, overall accuracy of the network model could reach up to 47%
which is better than the result without GA. It proved that the impact of overfitting could be alleviated by utilizing GA to
remove some redundant features. Besides, we also realized that our models could not benefit from the GIS technique.
Eventually, after we updated the learning rate selected by GA, overall accuracy of the network model could reach up to
49% which is slightly better than the result with the learning rate chosen from my experience. However, this result was
still lower than that of the paper [4].

The next stage of our work will record more observers’ response to others who suffer from various levels of
depression. Moreover, we may employ some other physiological features of observers to detect depression. Eventually,
some hyperparameters including the learning rate will also be optimized by techniques.
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