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Abstract. Artificial Neural Networks are a widely used algorithm and sit behind some of the most successful 
applications in artificial intelligence with the ability to recognise hidden patterns in data to solving complex 
problems. Motivated by this field in computer science, this paper looks at the performance of a traditional multilayer 
perceptron neural network model and a Long Short Term Memory deep neural network model in detecting smiles on 
pupillary response data, including a distinctiveness pruning technique to reduce model complexity. We found that no 
matter how advanced neural networks are in solving complex problems on sequential data, they lose performance on 
finite datasets. In all cases, our models did not achieve an accuracy above 50%. We also found that distinctiveness 
pruning can give us a simpler model at the expense of model prediction confidence. Finally, we conclude that 
pupillary response and gender information do not provide as much predictive power as we were hoping for. 
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1   Introduction 

In the 1970s, Paul Ekman identified six core emotions in human beings which since then, have led to 
scientists disputing the exact number of emotions which humans can express. In particular, emotion 
recognition has become a well-researched area due to the large number of potential applications in the real 
world such as to improve user experience, identify suspicious behaviour, or applications in education and 
gaming [1]. On the contrary, more research could be done in distinguishing between real and genuine or fake 
smiles. 
 
The human smile is complex. We smile when we are happy, but we also unconsciously smile when we see 
others smile, are surprised, embarrassed, socially anxious and more [2]. The existence of this complexity in 
our emotions means that even the human vision system struggles to accurately distinguish between a genuine 
or fake smile. The ability to read the difference between a fake and a genuine smile can help humans to react 
to the situation and make decisions accordingly. In 2015, British psychologist Richard Wiseman said that the 
general public can differentiate smiles at around 60% accuracy and an individual’s ability to tell the 
difference is also related to their profession and emotional intelligence.  
 
Machine learning approaches have produced very promising results in distinguishing between genuine and 
fake smiles compared to humans. In 2007, Valstar et. al. [3] tried to differentiate real smiles from fake smiles 
through video using kernel methods and ensemble learning techniques which achieved 94% accuracy. A 
significant finding in their paper was that the head was the most reliable predictor, followed closely by the 
face. In 2019, Moussa et. al. [4] developed an artificial neural network model (henceforth referred to as a 
neural network [5]) to distinguish between real and fake smiles by using electroencephalograms (EEG) 
signals, achieving an accuracy of 78.29%. More recently, Hossain et. al. [6] found a strong association 
between pupillary responses in humans when presented with real smile and fake smile stimuli. They 
conclude that pupillary responses reflect a displayer’s actual state of mind and judgement and gender is also 
significant to the pupillary differences observed. However, in their paper, they did not implement a machine 
learning approach. 
 
Motivated by the success of neural networks in deception recognition [7], in this paper, we explore how well 
a simple multi-layer perceptron (MLP) neural network classification model can use pupillary response data 
to differentiate between genuine and fake smiles. We will refer to this MLP model as the baseline model. 
The data collected by Hossain et. al. [6] in their study of how pupillary responses in participants can help in 
smile detection will provide us with a good foundation for this paper. We will use the original pupillary 



response dataset collected in their study, including inheriting the same definition of real and fake smiles from 
the paper. That is, a real smile is defined as a smile stemmed from happiness, and a fake smile is defined as 
one that has been posed, acted or one not a result of happiness. We then explore how much we can decrease 
the complexity of the MLP model by before sacrificing its performance using a distinctive network pruning 
technique on activation vector angles [8]. The pruning of neural networks generally help to decrease model 
complexity making it more interpretable and hence more desirable, increase generalisation to new data and 
increase inference speed. Finally, we explore what exploiting the sequential structure of the data in machine 
learning using a Long Short Term Memory (LSTM) [9] deep neural network classification model can have 
on model performance. 
 
The contributions of this paper can be summarised as follows: 
 

• We show that finite datasets heavily impact the performance of a neural network. Even though this is 
the case, the simple MLP and LSTM models are still able to provide predictions that are as good as 
random guessing. As a result, we did not see advantages in using a more complex LSTM model to 
capture memory of earlier sequential inputs. 

• We show that pupillary response and gender information do not provide as much predictive power as 
we were hoping for compared to the work by Moussa et. al. [4] using EEG signals. 

• We show that distinctive network pruning can give us a simpler model, but the trade-off here is the 
prediction confidence. 

2   Methodology 

In this section, we describe the attributes of the pupillary response dataset to be used for modelling as well as 
how it will be prepared to be used for building the MLP and LSTM neural network classification models 
since the input structure to these two models are different. The MLP model requires a fixed input structure 
compared to the LSTM model which accommodates input structures of varying length such as sequential 
data. We will then define how the MLP and LSTM models will be trained. In addition, this section will cover 
the distinctiveness pruning technique to be used on the trained MLP. 

2.1  Dataset Description 

The complete dataset captures pupillary responses from 10 healthy participants (observers) of Asian descent 
of which 6 were male and 4 were female [6]. In a controlled environment, the participants were presented 
with 19 grayscale video stimuli of fake and real smiles, each lasting 10 seconds long and adjusted to similar 
luminance ranges. Pupillary responses were collected throughout the whole video presentation with a cubic 
spline interpolation technique used to recover pupil size where the pupil was obscured due to blinking. Two 
versions of this dataset will be used in this paper – the raw dataset for the LSTM model, and an aggregated 
version for the MLP model. 
 
The aggregated version of the pupillary responses dataset contains averaged pupil diameter data captured 
during each 10 second video interval for each of the 10 participants. There are 541 pupil diameter values for 
each participant and these values are averages across the fake smile stimuli and real smile stimuli categories. 
This aggregated dataset does not contain any missing values and in addition, it also contains gender 
information for each participant which will be used for our modelling. This dataset will be great for the MLP 
model and this dataset contains 20 samples. 
 
The raw pupillary response dataset is very granular in nature. For each participant, we have information on 
their pupil diameter from both the left and right eyes, as well as which stimuli category they were viewing at 
the time. This raw version however, contains a number of missing values, and the number of data points for 
each participant varies in length. Some sequences are much longer than others, making this dataset great for 
the LSTM model. However, this raw version contains data for 11 participants. To keep the MLP model 
results and the LSTM model results comparable, data for participant p3 will be removed when building the 
LSTM model using this version of the data. The gender information derived from the aggregated version for 
each participant will be added to this version. This dataset contains 360 samples. 



2.2   Aggregated Dataset Challenges and Approach 

The challenge with fitting an MLP model directly to the aggregated dataset is that we have 542 input neurons 
but only 20 samples from 10 participants. If we treat the 541 pupil diameter values and 1 gender value as 
input features, we have 542 input neurons. Dimensionality reduction techniques will not help to decrease the 
input size space since there are only 2 core variables in this dataset, but the number of inputs is very large. 
An advanced data augmentation technique can be considered by fitting a Gaussian Process [10] to the real 
and fake classes separately to generate new observations. However for the purposes of this paper, a feature 
selection approach will be used where 6 handcrafted features will be created based on the findings in the 
original paper for the dataset. This will help to dramatically reduce the number of inputs while strategically 
feeding the neural network with more informative features. 

2.3   Data Preprocessing for the Aggregated Dataset 

Several data preprocessing steps need to be applied prior to training the MLP classification model. Our MLP 
classification model requires the classes to be predicted, i.e. the labels ‘Real’ and ‘Fake’, to be encoded as 
numeric values representing each category. As such, we encode real and fake labels as 1 and 0, respectively. 
All data related to groups of individuals will not be used for modelling, such as the average pupil sizes across 
all participants, all males, and all females since this information is not available from the raw dataset. The 
aggregated dataset is very balanced, with an even split between the amount of fake and real labels. 
 
Table 1 below summarises the 6 handcrafted and refined features that will be used as inputs to the neural 
network model, as derived from the reason/interest point finding from the original paper for the dataset. The 
features above were refined based on visual inspection from plots in the original paper of how they were able 
distinguish or separate the classes. 

Table 1.  Manually selected features for neural network model.  

Level Feature Interest Point in Findings 
Across all Pupillary size at 4.56s Pupil dilation differed significantly from real and fake 

smiles at 4.56s 
Across all Pupillary size at 8.65s Pupil dilation differed significantly 

from real and fake smiles between 8.62s and 8.67s 
Males vs Females Sex (1 for Male, 0 for Female) Patterns differ between males and females 
Males Rate of change between 4s and 10s Continuous pupil dilation from 4s to 10s in males for fake 

smiles 
Males Average of pupil sizes from 7.75s to 7.9s Pupil diameter significantly large for fake smile stimuli in 

males from 7.75s and 7.93s 
Females Rate of change between 3-3.5s Real smiles have a much steeper rate of change in pupil 

size from 2-4s in females 
 
We can derive the value at t seconds through a simple formula. Since 541 values were recorded across 10 
seconds, the value at t seconds can be derived by 541/10 multiplied by t to give us the index we should be 
looking for. After creating the 6 custom features, we check that these features indeed provide predictive 
power in distinguishing between the real and fake categories. For example, Figure 1 below is a plot of the 
pupillary sizes of each participant at 4.56s and at 8.65s against the real or fake labels. 

 
Figure 1: Relationship at 4.56s and 8.65s against Labels 



The scatterplot shows that higher values of pupillary sizes at 4.65s and 8.65s corresponds closely to label = 1 
(real smiles) compared to label = 0 (fake smiles) so there is a relationship which the neural network model 
can discover to the distinguish between the labels. Another example is shown below in Figure 2 below where 
a combination of gender and the rate of change at 4s and 10s could be strong predictors for a real or fake 
smile. For males (gender = 1), the negative values of rate of change at 4s and 10s are correlated to a real 
smile (class = 1) whereas for positive rate of change values, they are more correlated to a fake smile. 
 

 
Figure 2: 3D Scatterplot of Rate of Change at 4s and 10s against Gender and Classes 

Overall, the neural network model should provide some decent results given this smaller set of targeted 
features, even though it was all derived from the pupil size feature. Finally, the training data is normalized 
using the Min-Max Normalisation method [5] as a standard preprocessing step for neural networks and 
works well with the pupillary dataset since there are no outliers.  
 

2.4   Training a Baseline Vanilla Neural Network 

A vanilla, feedforward, fully connected MLP model will be trained and used as our baseline model for 
predicting real and fake smiles. This baseline model will be initialised with 6 input neurons corresponding to 
the 6 manually crafted input features, have 1 hidden layer, and 2 neurons in the output layer. The exact 
number of neurons in the hidden layer as a hyperparameter to be determined during training.  
 
The activation functions for the hidden layer and the output layer will be the ReLU and Softmax activation 
functions respectively. The ReLU does not suffer from the vanishing gradient phenomena compared to the 
standard Sigmoid activation and it is also computationally more efficient. The Softmax activation function 
scales the numbers/logits into probabilities which can then use to determine the prediction made for a given 
input (being the maximum probability).  
 
Since this is a classification problem, the MLP model will use the Cross-entropy Loss function and Adaptive 
Moment Estimation (Adam) [11] will be used as the optimiser to minimise this loss function. Adam is an 
adaptive learning algorithm which has faster convergence and is more reliable in reaching a global 
minimum, which will work well for this small dataset. 
 
A 20% holdout test set will be reserved for testing after the optimal hyperparameters set has been confirmed. 
The test set needs to be designed such that information does not leak between it and the training set 
introducing biases. As a result, the test set will contain both the real and fake sample data for 2 participants, 1 
male and 1 female, which means we will have 4 samples in total for testing. Due to the finite sample size 
(20), we are sacrificing accuracy for reserving 4 data points for testing, however, this is the smallest test size 
we can have to keep our test results reflect our model performance. For example, with only 1 test sample, our 
accuracy will be either 0% or 100% and this is not a good estimate of actual model performance. The same 
scenario applies for 2 samples. 
 
A Leave One Out Cross-validation (LOOCV) technique will be used on the remaining 80% of the data for 
model training and selection to assess the predictive power of the baseline model. This 80% will be split into 



a training and validation set at each fold and a manual search will be run to determine the optimal set of 
hyperparameters. 
 
For each hyperparameter set at each fold, the neural network will be trained on the training set and its 
accuracy on the evaluation set will be recorded. Accuracy is the preferred as the model evaluation measure 
since we only have 1 data point in the evaluation set. The optimal hyperparameter set will be chosen based 
on the best average accuracy score over all 16 folds. The corresponding average accuracy to this optimal 
hyperparameter set will be reported as the generalisation error for the final baseline model. Due to the small 
dataset and the potential of the model overfitting, a value lambda was also added as a hyperparameter for L2 
regularisation on the model. As such, the hyperparameters and the hyperparameter search space which the 
LOOCV is evaluating across is shown in Table 2 below. 

Table 2.  Hyperparameters for MLP and their search spaces.  

Hyperparameter Search Space 
Lambda L2 Regularisation [0, 0.01, 0.05, 0.1, 0.2, 0.4] 
Neurons in Hidden Layer [2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 
Epochs [100, 150, 200] 
Learning Rate [0.001, 0.1, 0.05, 0.1] 

2.5   Neural Network Pruning Technique of the Hidden Neurons 

Pruning of neural networks can help to decrease model complexity, making it more interpretable and 
desirable. In 1995, Gedeon [8] compared model performances for 2 neural network pruning techniques 
which assesses the functionality of each hidden neuron. Gedeon concluded that the distinctiveness angle 
calculation by using the activation vectors from the hidden layer were better than the distinctiveness 
calculation by using the static weight vectors for the given image compression task. 
 
Motivated by Gedeon’s work, this paper applies the hidden neuron pruning technique on the neuron output 
activation vectors to determine a neuron’s distinctiveness and whether it should be pruned. Gedeon et. al. 
proposed that the distinctiveness property [12] of hidden neurons is based on the neuron output activation 
vector over the patterns in the training set. For each hidden neuron, calculate the output activation values of 
the neuron across all training samples to construct a vector. This gives a matrix of size 𝑚 × 𝑛 where 𝑚 is the 
number of training samples and 𝑛 is the number of hidden units. Each column of the matrix is normalised to 
be between [-0.5, 0.5] before calculating the angle between the hidden neurons (as the indicator of 
distinctiveness). Hidden neurons that are similar have angles less than 15° and complementary hidden 
neurons have angles more than 165°. In both cases, the decision is to remove one from these pairs. In the 
removal process, one neuron is selected and removed by manually setting its weight to zero (mimicking the 
direct removal of the neuron from the network), and the weight vector of the neuron removed is added to the 
weight vector of the other neuron. 
 
In this paper, this pruning technique will be used on the hidden neurons in the baseline model and a 
comparison on model performance with and without pruning will be analysed. 

2.6   Data Preprocessing for the Raw Dataset 

Since the raw dataset is split across 2 Excel files and multiple worksheets, the first step was organizing the 
sequential data into the same tabular format. The left and right eye pupil data are stored in different files. In 
each file, there are multiple worksheets corresponding to the code of the stimuli materials which was shown 
to each participant. Stimuli codes beginning with ‘A’ are non-genuine smile stimuli and stimuli codes 
beginning with ‘L’ or ‘H’ represent genuine smile stimuli. In each worksheet, the participant id and the 
recorded pupil diameter sizes are listed with varying lengths and missing values. 
 
In order to best organize the pupil diameter information, we can create columns to store information for the 
participant id, participant gender, which eye the data comes from, the stimulus material code, the pupil 
diameter value recorded, and the ground truth label (real or fake). For modelling, only the pupil diameter and 



gender features will be used as inputs. The participant id, which eye the pupil information was recorded 
from, and the stimulus material code will not be used as inputs into the LSTM model. 
 
Several data preprocessing steps also need to be applied prior to training the LSTM classification model. The 
ground truth labels ‘real’ or ‘fake’ are encoded as numeric values 1 and 0 respectively, representing each 
category. The real and fake classes are quite balanced, with 47 % in the real class and 53% in the fake class 
and there are 370 sequences in total. 
 
Missing values will be dealt with based on 2 scenarios. In the first scenario, if the sequence starts with or 
ends with missing values, these missing values will be removed since they do not provide any useful 
information for modelling purposes. This means that each sequence begins or ends with an observed value. 
In the second scenario, missing values within a sequence will be interpolation using linear interpolation. The 
assumption is that in the simplest case, there is a gradual increase or decrease in pupil sizes between 2 known 
points and there are no stochastic or drastic changes affected by the environment (environment was 
controlled in the study). 
 
In contrast to the feature selection step for the aggregated dataset, we will not perform feature selection for 
the raw dataset due to the LSTM model as explained in the next section. Since each sequence length can be 
very different, it is extremely difficult to pinpoint the correct pupil dilation at a timestep t with confidence, 
using the same equation we used for the aggregated dataset. In essence, the LSTM will accept 2 input 
neurons due to its architecture, being the pupil dilation size at a particular timestep and the gender of the 
participant.  
 
The Min-Max Normalisation will also be applied to the training data, with the same normalisation factor 
applied to the testing data before predictions are made. 

 
2.7   LSTM Model 

The Recurrent Neural Networks (RNN) [13] is a popular neural network architecture for modelling 
sequential data due to its performance and application to important tasks such as speech recognition [14], 
time series prediction, and image captioning. RNNs contain connections between input units, allowing them 
to capture dependences on inputs through time. This connection feeds the hidden state of the previous input 
into the current input and are effective in handling sequential data with varying lengths such as the raw 
pupillary response dataset. Figure 3 [15] below shows the general structure of an RNN on the left hand side 
which can be unfolded through time and represented as the network on the right hand side. 
 

 
Figure 3: RNN Network Structure 

However, RNNs suffer from the vanishing or exploding gradient problem in backpropagation through time 
[16]. For our raw dataset, sequence lengths can range from over 700 to over 1,100 so using an RNN can 
cause issues. LSTMs are an implementation of RNNs which overcomes this issue. LSTMs house a memory 
cell, shown in Figure 4 [17] below, controlling 3 gates that decide when and what type information in the 
network should be fed into the current hidden unit. 



 
Figure 4: LSTM Memory Cell 

 
We will build a simple LSTM model with 1 hidden layer using the raw data in understanding if sequential or 
temporal information can help us better predict a real smile from a fake one. As with the MLP case, the 
LSTM classification model will use the Cross-entropy Loss function and the optimizer Adam. Although the 
classes of real and fake samples are quite balanced, care needs to be taken when splitting the dataset into a 
training, validation and testing set. We need to ensure that we do not leak information between the different 
sets of splits. In our case, we will split the data into 70% training, 20% validation, and 10% testing based on 
participant level information. This ensures that data samples for a participant such as their left and right pupil 
information stay in the same split. For training, we will use a batch size of 1, since all the sequences are 
different lengths. 
 
The evaluation set will be used to optimize over the hyperparameter set for the LSTM model. The optimal 
hyperparameter set will be chosen based on the best accuracy score. The final LSTM model will be trained 
using the optimal hyperparameter set on the full training set (90% of the data) and evaluated against the test 
set. The hyperparameters and the hyperparameter search space used in this paper is shown in Table 2 below. 

Table 3.  Hyperparameters for LSTM and their search spaces.  

Hyperparameter Search Space 
Lambda L2 Regularisation [0, 0.1, 0.2, 0.3] 
Neurons in Hidden Layer [5, 10, 50, 75, 100, 150, 200] 
Epochs [10, 50, 100] 
Learning Rate [0.01, 0.05, 0.1, 0.2, 0.3] 

3   Results and Discussions 

3.1   Baseline Neural Network Model 

After running LOOCV on the 1,368 hyperparameter combinations on the baseline model, the best set of 
hyperparameters found was epoch = 100, learning rate = 0.1, number of hidden neurons = 7, lambda = 0.01 
with an average validation accuracy score of 62%. It seems that the baseline model benefits from a very 
small amount of regularisation. The training loss per epoch is shown in the line plot in Figure 5 below. 
 

 
Figure 5: Training Loss of Baseline Model 



As expected, the training loss for the baseline model decreases as the number of epochs increase which 
means the model is training well. The final training loss for the baseline model was to be 0.475 and the 
training accuracy was 81.25%. However, the test accuracy for this model was 50%. If we have a look closer 
in what this baseline model is outputting in its predictions for the 4 test cases, the baseline model was 
making all predictions for class 1 (real smile) with over 60% probability in all cases. 
 

3.2   Pruned Neural Network Model  

2 iterations of network pruning were performed on the baseline model to reduce the model complexity. 
Where a decision had to be made on which hidden neuron to keep, the earlier numbered neuron was removed 
by forcing its weights to zero. The results are summarised in Table 4 below. 

Table 4.  Distinctiveness Neuron Pruning Iteration Results.  

Iteration Number Smallest Angle Neuron Pair Decision Pruned Model Test Accuracy 
1 1.16° Remove 2, Keep 3 50% 
2 1.21° Remove 4, Keep 5 25% 

 
After pruning 2 hidden neurons from a model of 7 hidden neurons, we found that the test accuracy of the 
neural network decreased from 50% to 25%. This means that we should only remove one neuron from the 
model in order to maintain our accuracy in predictions. By performing distinctiveness pruning on the 
activation output vectors, we can reduce the number of hidden neurons by 1 neuron (14%), thereby 
simplifying the model to reduce redundant neurons. 
 
If we take a look closer at what this pruned model is outputting in its predictions on the same 4 test cases, 
this pruned model actually predicted 2 real smiles and 2 fake smiles, which is better than predicting all of the 
same class (baseline model). However, 2 of these predictions were very borderline cases, meaning the 
network has become more uncertain about these cases after removing a neuron. 
 
Neural networks are capable of modelling both linear and complex, nonlinear relationships among variables 
[18]. However, even though the features we generated look promising in detecting real smiles, it seems that 
there is no complex relationship between pupil size and gender which can help us discriminate real from fake 
smiles. 

3.3   LSTM Model  

For the LSTM model, we experimented with including and excluding gender information. Although in the 
original paper for the data, it was found that gender could provide predictive power for our classification 
task, we found that the gender information did not provide any advantages for the LSTM model. The 
evaluation set accuracy was almost identical for the same hyperparameter sets. This may be because gender 
is a feature which does not change its value over time, so gender does not provide any additional predictive 
support for the LSTM model. For example, the LSTM model might learn to always forget the historical 
patterns for gender since it will always receive it in its current input, or vice-versa. As such, the final model 
after hyperparameter testing will only consider the pupil size as the input. 
 
After running different hyperparameter combinations on the LSTM model, the best set of hyperparameters 
found from our hyperparameter search space was epoch = 50, learning rate = 0.2, number of hidden neurons 
= 50, lambda = 0.2 and the evaluation accuracy was 52%. It seems that the LSTM model benefits from some 
regularisation. The final model was trained on 90% of the data and the final model had a testing accuracy 
score of 50%. It turns out that the LSTM model was making all its predictions for class 0 (fake smile) on all 
26 test data with over 80% probability. 



3.4  Discussion 

In all cases, the test sets were very balanced in terms of real and fake samples. However, for the baseline, 
pruned, and LSTM neural network models, the accuracy of the models on the test set did not surpass 50%. In 
other words, the neural network models performance is as good as anyone random guess by chance. What is 
very surprising is that the baseline model was predicting that everything was a real smile whereas the LSTM 
model was predicting everything was a fake smile. The baseline model became more uncertain in its 
predictions after one hidden neuron was removed, despite holding the same accuracy score on the test set. 
Although the pruned model would generally be more preferred due to its simplicity, it is very difficult to 
conclude which model was superior due to the finite number of samples available for all models. We also 
saw that although we were able to prune the model and maintain the same test accuracy, the pruned model 
became more uncertain in its predictions. In addition, with increased data samples, these models will be able 
to make better quality predictions and this is especially true for the deep learning model [19]. Another 
popular method is transfer learning [20], which helps deep learning models overcome the issue of finite data. 
 
Transformer [21] is another popular type of RNN model and is state of the art when it comes to applications 
on sequential data such as natural language processing or time series tasks. The advantage of modelling with 
the transformer model is that it uses multi-head attention – a mechanism which is able to learn contextual 
information. The transformer model could be a good application to this dataset. From the original paper for 
our dataset, we know that there are different points in time for pupil dilation which were statistically 
significant and we used these points in time to handcraft our features for the baseline model. The transformer 
model could learn to pick up these contexts in the sequence to better predict a real smile from a fake smile. 
 
Even though gender influences pupil size in the study from the original paper for this dataset, we found that 
static features such as gender had no impact on the LSTM model’s predictive power. We also found that 
there was no strong linear or non-linear relationship between gender and pupil size that could help us detect 
real from fake smiles. This suggests that we cannot use pupil size alone to detect genuine smiles and that we 
may need other features such as EGG data or we may need to enrich our dataset with another feature that is 
to complimentary with pupil size. 

4   Conclusion and Future Work 

Using the findings from a study of the relationship between pupillary size and fake or real smiles, this paper 
implemented 3 neural network models in attempting to detect real smiles using pupillary data from 10 
participants. The first model was referred to as the baseline model which is a 1 hidden layer, MLP model 
with optimised hyperparameters. The second model is a pruned version of the baseline model using angle 
distinctiveness based on activation vectors of the hidden neurons. Using this pruning technique, we were able 
to prune 1 hidden neuron from the baseline model before sacrificing accuracy on the test set. The final model 
was a 1 hidden layer LSTM model with optimised hyperparameters. In all cases, these models all achieved 
50% accuracy on the corresponding test sets. As a result, there are no advantages in using a more complex 
LSTM model to capture memory of earlier sequential inputs for this dataset. 
 
We found that the models performing at the same accuracy as random guessing. This could be due to a few 
factors. One of these factors could be related to the finite sample size, as we know that neural networks, 
especially deep neural networks, benefit from large amounts of data. Another factor worth mentioning is that 
the pupillary size and gender feature combinations may not provide enough predictive power in detecting 
real smiles compared to EEG signals which gave higher performances[4]. We can consider applying transfer 
learning or collecting more data in these cases. In our case, we also found that there was a trade-off between 
model prediction confidence and model complexity when we pruned our baseline model. This could be the 
influence of the finite sample size or indicate a more complex model with more hidden layers is required. 
 
In future work we can consider more advanced RNN techniques such as Transformer models, or improve 
current models by adding additional hidden layers. In the case of the latter, the distinctive network pruning 
method can still be applied. We can also consider ensemble methods such as bagging or boosting [3] with 
other machine learning models which could help to improve the performance of the model and generate 



better insight. Performing automated grid search or random search with a larger hyperparameter search space 
could also give better modelling results. 
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