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Abstract. The subject of expression recognition has been studied for many years. There are many uncer-
tainties in the real world, such as pose, exposure, brightness, etc., which can affect the accuracy of expression
recognition. Each model has its own unique characteristics. Some studies have shown that many models can
achieve good performance in expression recognition after removing the complex and irrelevant factors. In order
to find a model that can better adapt to complex uncertainties, we investigate the performance of Convolution
structure and Cascade structure on expression recognition respectively. By testing the classification on the same
SFEW dataset, the Convolution structure can average get 23.93% accuracy far better than Cascade structure’s
19.95%. And Convolution structure’s standard deviation is 3.11 has better robustness than Cascade’s 6.23.
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1 Introduction

The complex diversity of the environment makes facial expression recognition in the wild very challenging. The cur-
rently existing expression classifiers can achieve the desired situation in specific situations. However, the classification
results are not satisfactory when extreme SFEW datasets[1] are encountered. Nowadays, expression recognition has
many applications in the field of human-computer interaction, such as affect analysis, and mental health assessment.
The research on facial expressions in images has recently attracted a lot of interests[5]. In general, emotions include
angry, disgusted, fear, happy, neutral, sad, and surprise. Facial expressions can best represent a person’s emotions.

To achieve high accuracy face emotion recognition is a computationally intensive and very challenging task. With
the recent development of deep learning and parallel algorithms, classification with convolutional neural networks
has made great achievements[2]. Deep learning differs from traditional machine learning algorithms in that they
are able to perform feature extraction and classification simultaneously. Another advantage of deep learning is that
the parameters are updated by back propagation by calculating the error from the ground truth. Therefore, the
algorithm can extract unexpected features from the original data. Convolutional neural networks are particularly
suitable for 2D image training sets. Convolutional neural networks are essentially a special kind of multilayer per-
ceptron(MLP)[6] .

The Cascade framework is a dynamic and adaptive structure[4]. Different from other frameworks, it determines
in real time whether additional neurons are needed for feature extraction and accelerated convergence based on
experimental errors. Therefore, the final generated network has no redundant neurons. This helps it to save a lot
of computational resources. We all know that a single image contains a huge amount of data information. When
we need to train hundreds of images, the amount of input data will be extremely large. If the network framework
is pre-defined at the beginning, there is a certain probability that the network framework will not match this huge
amount of data. In other words, we will not get good training results. Therefore, it is feasible to use Cascade
framework for feature extraction and classification of large number of images.

In this paper, we will compare the performance of the Convolution structure [3] and the Cascade structure[4] for
facial expression recognition. First will introduce the SFEW dataset used for our experiments, and Section 2 intro-
duces the characteristics and parameter settings of the Convolution structure and Cascade structure respectively.
Section 3 will discuss the results of the analysis experiments. Finally, it is summarised that the Convolution struc-
ture has better performance in facial expression recognition.

1.1 SFEW Dataset Inspection and preprocessing

Static Facial Expression in the Wild (SFEW) dataset[1] contains the 10 PCA of 674 images and each of them has
been labeled for one of their seven different emotions(Angry, Disgust, Fear, Happy, Neutral, Sad, and Surprise) the
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Column 1 in Fig.1(a). Those images are some extremely high or low-resolution faces, which are very close to the
real world. The collection of the SFEW dataset has the First 5 PCA for Local Phase Quantisation(LPQ) (Col-
umn 2 to 6 in Fig.1(a)) and the First 5 PCA for Pyramid of Histogram of Oriented Gradients(PHOG) (Column
7 to 11 in Fig.1(a)) separately. Using these 10 features to classify the emotion group. The classification accuracy
of only using LPQ is 43.71% and only using PHOG is 46.28% mentioned on the paper[1]. The paper also clas-
sified that using the current state-of-the-art methods does not perform very well on more real-world conditions.
Therefore, train this dataset can ensure the robustness of faces-emotion classification but harder to do classification.

Compared with the features data scale, the difference between the max value and min value is very large see in
Fig.1(a), but the mean of each feature class is close to 0 and all of them are on the same scale. Therefore, the
normalization of this dataset is not very necessary. Preprocessing only needs to remove the NaN, missing, value and
convert all data to float type for computation.

(a) SFEW dataset description

(b) SFEW Distribution

Fig. 1. SFEW Dataset

2 Methodology

2.1 Convolution Structure

CNN is a representative model of Convolution. Convolution of several features of a sample to obtain new features
is the characteristic of the Convolution structure. Generally, there will be multiple features to decide the sample
belongs to which class. Extracting some connections inside those features could help to gain deeper relationships
between features and classes.

Normally CNN will have three parts, Convolutional Layer, Pooling Layer, and Fully-connected Layer see Fig.2.
Convolutional Layer can shrink the image scale. An image has a lot of similar areas. What the classification needs
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to do is to match a similar pattern in another region. We can convolve those repeated areas into a smaller region.
Therefore, the smaller region contains more compact information. From here we can learn some useful experience,
applying the convolution operation to the SFEW data set. Squeeze the original data to a higher dimension, which
can establish some hidden relationships among the original data. Pooling Layer means downsampling of an image.
Take the MaxPool1d as an example, it only preserves the largest value of a specific region, and the value could
be positively related to the probability of the right class. Thus, Pooling only reduces the computation parameters
and pooled data’s structure is still stable. Finally, Fully-connected Layer takes the result of all previous layers to
generate the output. Multi-Layer Perceptron(MLP) can be assumed a Fully-connected Neural Network. Take the
input and try to find the best parameters to do the classifications.

Fig. 2. CNN structure

In a summary, the convolutional structure can generate some high-dimensional data from the original data to train
the model. When we combine CNN and MLP together, it can extract the relationship between classes and features
from both high dimension and original data. We will compare them with the following structures in order to test
the performance of classification.

2.2 Cascade Structure

Casper is a representative model of Cascade. Only inserts a group of hidden neurons into the structure when nec-
essary is the one attribute of the Cascade structure see Fig.3. It can help Casper to construct a proper topology
without any redundant neurons and have a better performance. In order to gain as many details as possible from
the entail topology, previously added hidden neurons still keep updating and no one is frozen. The input size of the
following new neurons will be extended by the output of the previous neurons.

Setting different learning rates for the 3 specific parts is the second attribute of the Casper see Fig.3. The weights
have a connection with the newest neuron use L1. The weights of the newest neuron connected to the output layer
use L2. The rest of the weights use L3. And the relationship between them is L1 ≫ L2 > L3. The largest L1 ensures
the new hidden neuron learns more information from the previous network. Using a larger learning rate before the
output layer can reduce the error of classification. For example, 0.2, 0.005, and 0.001 are suitable learning rate
settings for three sections.

2.3 Optimisation

Due to the total dataset has 674 samples for 7 classes and each class has nearly 100 samples see Fig.1(b), all models
will set 200 as the batch size which can make sure adequately cover the data of seven classes in each step. All the
models will train for 1500 epochs to try to get coverage.

CNN model setting In order to determine which class the data belongs to, more relationships between LPQ
and PHOG with the class are needed to be found. Convolution between 10 features of data or between features of
data of the same sentiment group can obtain a deeper relationship that how the features determine the same class.
Thus, we plan to squeeze each data from the original 10 dimensions into 5 dimensions and do the batch norm to the
squeezed data. The main reason is that each data has two PCA and each of them is 5 dimensions. Therefore, try
to squeeze them into 5 dimensions could find new relationships inside them. Before entering the next convolution
layer, apply the RELU activation function to the result and choose the maximum value by the Pooling layer. RELU
activation function only keeps those values that have strong generalisation. MaxPool1d only remains the largest
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Fig. 3. Cascade Structure. Red lines are Connections with L1, blue lines are Connections with L2, Rest are Connections
with L3

value of a specific region and the value could be positively related to the probability of the right class.

Then we will do a similar operation but squeezing the data into 3 dimensions, hope to find new hidden relation.
Finally using a fully connected layer to scale the output to seven class dimensions. And apply the F sofmax to
construct the final output. Then use the F.nll loss to calculate the loss between output and the ground truth. Based
on the difference to do the back propagation and update the parameters by Adam optimizer. The learning rate is
0.005 and the weight deacy is 0.001.

Casper model setting The local minimal problem is one of the universal problems when using gradient descent
to calculate the best hyper-parameter or weights for a model. Exponential learning rate decay [9] can achieve faster
convergence and prevent stuck in local minimal.

lr = lr ∗ 0.9epoch/decay step (1)

Three hidden groups can have more than one hidden neuron. The more hidden neurons installed, the more informa-
tion can be extracted from the data set potentially. With the more hidden neurons installed, the connection inside
the neuron network is much larger. Therefore, based on the inserting strategy[7], we are going to check whether
the new extra hidden is needed or not when the epoch is satisfied the Eq.(2). Set P a little larger to get a larger
checking period in order to make training well-balanced and then install a new neuron. During the gap, the learning
rate will be decayed by Eq.(1). If we check the loss too frequently, the operation will make all previous decaying
achievements useless. For example, we set P as 10 when hidden neurons less than 5, set P as 15 when the number
is less than 10, and 20 when the number is less than the maximum size of 20.

epoch = epoch+ 15 +N ∗ P (2)

Each neuron will take its input value through the Sigmoid Activation function and through the F.log sofmax to
construct the output. Then use the F.nll loss to calculate the loss between output and the ground truth. Based on
the difference to do the back-propagation and update the parameters by Rprop optimizer.

3 Results And Discussion

In this section, we conduct a series of experiments to evaluate the performance of the proposed theory at the be-
ginning. To be more specific, we use the Train data set to train the neuron network and then apply the network
to the Test data set we have split at the beginning. And the test accuracy will be calculated by Eq.(3). Also, we
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will use the LPQ and PHOG two PCA together to train three models. The results will also be compared with the
previous researches.

Test Set% =
the number of correct classification result

the total number of T est data size
(3)

Test setting First of all, randomly split 80% data to train the model and the left 20% to test the model at
the beginning of each round, the models will not access the test set during the training. Then, using the same
Train data set to train the two models(Cascade with Convolution and Convolution with Convolution + MLP),
which will neutralise the influence of random seed, so does the Test data set. We have compared the representative
model of two structures and two different Convolution Structure models for 10 rounds see Fig.4(a) and Fig.4(b)
separately.

(a) Compare Casper to Conv (b) Compare Conv to Conv with MLP

(c) Cascade Train loss (d) Convolution Train loss

Fig. 4. (a) Compare the Cascade Structure with Convolution Structure (b) Compare two different Convolution Structure
(c) Cascade training loss (d) Convolution training loss

Table 1. Compare Three models with SOTA on the same SFEW datasets

Casper’s Test Set% Conv’s Test Set% ConvMLP’s Test Set% SOTA’s Test Set%

Average 19.95 23.93 22.96 56.4

Std. Dev. 6.23 3.11 3.85
Median 19.42 23.86 22.81
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Three models Comparison Although this is a multi-classification problem, the test set is randomly sampled from
the seven classes of data, so the testing can satisfy the class distribution. From Fig.4(a) we can see that Convolution
Structure using convolved data has better performance and better robustness when dealing with different test
groups. From Table.1, we can see the standard deviation of the Convolution Structure is 3.11 less than the Cascade
Structure’s 6.23. Thus Convolution structure is more stable. Although Cascade Structure can get higher peak
accuracy 35.38% it has a more erratic performance situation. When we combined the convolved data with the
original data, the green line in Fig.4(b) performances a little bit higher instability, its standard deviation is 3.85, but
still much better than Casper. From Fig.4(c) we can see that there are multiple peaks. Based on the characteristics
of the Cascade structure, new neurons are added in the place of those peaks. From Fig.4(d) we can see Convolution
structure can achieve convergence relatively quickly.

Previous Researches Comparison The Current SOTA RAN’s accuracy on the same SFEW dataset we tested
is around 56.4%[8]. It is structured as a combination of VGG16 and ResNet18. Both structures have a much more
complex network complexity than our models. In principle, more complex networks are able to extract more infor-
mation from the same data, but there is no direct connection. RAN also employs a range of optimisation methods.
Such as residual optimisation method and so on. This might be one of the factors for its high accuracy.

Fig. 5. Confusion matrixes for Cascade and Convolution structure

Also, by analysing the confusion matrix see Fig.5, Train accuracy of Conv is 42.23% and its test accuracy is
25.34%, Train accuracy of Casper is 26.70% and its test accuracy is 23.97%. We can conclude that the convolu-
tional structure is more prone to overfitting. The convolutional structure misidentifies more samples into the first
class, which leads to an overfitting situation. However, the Casper structure does not. From what we know, convo-
lution is more sufficient in extracting the relationship between features, and thus more samples of the same class
can be identified to the correct class, but it also increases the probability of incorrectly identifying other samples
to this class. CNN has not very good generalisation capability. Casper, on the other hand, has a similar accuracy
in the training and test sets, which means the non-redundant topology is useful.

Overall, the major reason for the low test accuracy is that the SFEW data set is close to real-world conditions.
Even we used the PCA of LPQ and PHOG together, the real-world condition is still very complicated. Due to
the adaptation attributes of the Cascade structure, the Non-redundant topology sometimes can have very high
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classification accuracy. Some experiments show that the Convolution structure could distill more helpful information
to performance stability. All of our structures have not enough layers and parameters compare to the SOTA model,
which could be one of the drawbacks.

4 Conclusion and Future Work

This paper compares the classification performance of Cascade structure and Convolution structure on the SFEW
dataset. Through three sets of model tests, we find that the accuracy and robustness of the Convolution struc-
ture are better than those of the Cascade structure on classifying the SFEW dataset. Even though Cascade can
occasionally achieve high classification accuracy through its adaptive topology feature, it rarely happens with this
high accuracy. For the convolutional structure, since the classification is done by analysing the relationship between
features, it is more prone to overfitting.

There is still a lot of potential drawbacks that can be optimised on our Convolution structure. Try to scale up the
network’s size to obtain more subtle and more obscure relations. Theoretically and technically, the larger size of a
network will have more parameters, which means easier to form a more precise model to do the classification. The
current SOTA used VGG16 and ResNet18. And it performs far better than ours. Nevertheless, the larger scale of
a structure also means the much more parameters should be converged. Thus, we will encounter a new efficiency
problem. Extract the face features from the original image could be our next step. Replace 10 PCA with the entire
facial features.
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