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Abstract. The problem of land degradation has progressively become more severe in Australia. Apart from 
making land unsuitable for agriculture, it leads to increased contamination of rivers and gullies. Which is 
detrimental to the eco system of these water bodies. One of the main contributors to land degradation is the 
erosion of soil. Although there are many types of erosion, this paper aims to tackle the problem of water erosion. 
Water erosion is the process of removal of topsoil due to movement of water. Water from rivers, rains, slopes 
etc. together lead to water erosion. Water erosion is especially severe in dry regions with high slopes. 
Identification of these regions is necessary to devise preventive strategies against water erosion. A variant of 
an existing technique using Bi-directional propagation of weights was used for classification. Bi-directional 
Neural Networks are mainly used in learning weights that can not only predict output patterns given input 
patterns. But also generate likely input patterns given output patterns. This leads to better generalisation. In 
order to reduce the dimensionality of the input space, genetic algorithms were used to select the set of features 
that favour bidirectional propagation of weights.  
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1   Introduction 

The data used to conduct the experiments is a subset of the one used by Milne, Gedeon and Skidmore [1]. 
The dataset corresponds to the Nullica State Forest region in the south cost of New South Wales, as 
mentioned by Milne, Gedeon and Skidmore (199. Each sample in the dataset corresponds to a pixel of size 
30m x 30m. The data collected for each pixel includes geographical data like slope, aspect and elevation. 
Weather data such as temperature and rainfall. Landsat TM bands data from Band 1 to 7. Detailed 
explanation of these features can be found in Section 2.  
 
The Bidirectional Neural Network methodology followed in this paper is heavily inspired from Nejad and 
Gedeon [2]. As shown by the experimental results in Nejad and Gedeon (1995, Section 4). Bidirectional 
Neural Networks can be used to train weights that can not only predict output patterns given input patterns. 
But the weights can also generate input patterns using output patterns. This inverse functionality of the 
weight matrices leads to better generalisation of the input space (Nejad and Gedeon, 1995, Section 5).  
 
This paper proposes and makes use of two bidirectional neural network models. They will be referred to as 
simple-BDNN and robust-BDNN here onwards in this paper. The simple-BDNN was used in tandem with 
genetic algorithms to find features that would favour bidirectional propagation of weights. i.e., the 
performance of simple-BDNN acted as the fitness function that would be used to select suitable features. 
The suitable features were then used to train the robust-BDNN model.  
 
The analysis of the ROC curve on class probabilities given by robust-BDNN shows that the trained robust-
BDNN can differentiate between dry pixels with the ones that are not dry with a surprisingly high accuracy. 
This paper shows that bidirectional neural networks could be relied upon for similar tasks.  

2   Data 

There are 190 samples, each corresponding to a pixel of size 30m x 30m. For each sample, continuous and 
categorical features were available.  

2.1 Preprocessing 

The strategy used to encode them as inputs to a neural network was as follows.  



 
 

i. Altitude. Elevation of each pixel. Normalised to be between 0 to 1.  
 

ii. Slope. Slope of the pixel. Normalised to be between 0 to 1.  
 

iii. Temperature. Temperature at the geographical location of the pixel. Normalised be 
between 0 to 1.  

 
iv. Rainfall. Average rainfall at each pixel. Normalised to be between 0 to 1.  

 
v. Aspect. Represents the downslope direction of the maximum rate of change in altitude 

of a pixel with respect to its neighbouring pixels. It essentially tells in which direction 
water would likely flow in after falling perpendicularly on a pixel. The original encoding 
of this feature was categorical. Represented by a single unit that took one of 8 values. 
This did not reflect the angular nature of aspect data.  To feed the true essence of the 
aspect value to a neural network, it was represented using 4 units. Where each unit 
corresponded to one of the 4 parts of the compass. Refer Table 1.  
Table 1. E1, E2, E3, E4 refer to each unit in the new encoding 

Old Encoding Compass E1 E2 E3 E4 

0 Flat  0 0 0 0 

10 North 1 0.5 0 0.5 

20 Northeast 1 1 0 0 

30 East 0.5 1 0.5 0 

40 Southeast 0 1 1 0 

50 South 0 0.5 1 0.5 

60 Southwest 0 0 1 1 

70 West 0.5 0 0.5 1 

80 Northwest 1 0 0 1 

 
vi. Topography. This was initially a relative categorical value. Was normalised whilst 

preserving its relative categorical nature. Refer Table 2  
  Table 2 Note that both values 48, 64 are considered to be mid slopes 

Topography  Gully Lower slope Mid Slope Upper Slope Ridge 

Old Encoding 16 32 48 64 88 96 
New Encoding 0.0 0.25 0.5 0.5 0.75 1.0 

 
vii. Landsat 7 Bands. Refers to data collected from the Landsat 7 Satellite’s sensors. All 

bands were normalised.  
Table 3. Table information from USGS Website [3]  

Band What does it sense?  

TM1 Distinguishing soil from vegetation and deciduous from coniferous vegetation 
TM2 Emphasizes peak vegetation, which is useful for assessing plant vigor 
TM3 Discriminates Vegetation Slopes 
TM4 Emphasizes biomass content and shorelines 
TM5 Discriminates moisture content of soil and vegetation 
TM6 Thermal mapping and estimated soil moisture 
TM7 Hydrothermally altered rocks associated with mineral deposits 

 
After pre-processing the 13 features, the dataset consists of 20 columns. As explained in later 
sections, most features would be highly correlated. And some would not be useful for 
classification.  
 
 



2.2. Train and Test Split 

The dataset contained 190 samples. 20 percent was used for testing. Training and testing sets were created 
using stratified sampling [4]. Refer  
 
Table 4. Train and Test sets distribution 

Class  Train Test 
Dry 77 19 
Not Dry 75 19 

3. The simple-BDNN and feature selection.  

3.1 simpleBDNN 

As discussed earlier, the network is capable of predicting output patterns given input and vice versa.  

 3.1.1. Predicting Output Patterns 

For a sample ‘n’, with an input pattern ‘x’, the output pattern is predicted using 2 fully connected 
linear layers. With the same activations as shown in figure1.  

 

 
Figure 1 simple-BDNN predicting output pattern 

 3.1.2. Predicting Input Patterns 

For the same sample ‘n’ mentioned in the previous section, with an output pattern ‘y’, the input 
pattern is predicted by reversing the linear layers. Essentially, the order of weights is reversed, and 
the weights are transposed as shown in figure 2. This way the same weights are used to predict the 
outputs from inputs and vice versa.  

 



 
 

 
Figure 2. simple-BDNN predicting input pattern 

   3.1.3 Updating Weights 

For each same sample ‘n’, let the error in the prediction of the output pattern be EF  and the error 
in the prediction of the input pattern be EB. Then we define total error i.e. ETotal  = EF  + EB . The 
total error is used to update the weights with the intention of making them capable of predicting 
input patterns from output patterns and vice versa.  
 
Note: The loss in EF was calculated using binary cross entropy loss function. The loss in EB was 
calculated using mean squared error.  

3.2. Feature Selection 

The simple-BDNN model was used for calculating fitness of each subset of features in the feature selection 
process. It is important to note that the simple-BDNN model is flawed, because it is not trained using data 
that has a one-to-one mapping between input and output patterns. This would lead to poor learning on 
bigger input spaces. Classification performance of simple-BDNN was chosen as a measure of fitness in the 
expectation of choosing subset of features that would not incur a heavy loss when predicting the output 
patterns from input patterns. And also reduce the input space, choosing a smaller subset of features.  
 
Including all the TM bands (table 3), there are 14 features for each sample encoded using a 20-dimensional 
vector. There are 3 motivations to using simple-BDNN with genetic algorithms for feature selection 

1. Reduce the feature size to make it easy for simple-BDNN and robust-BDNN to predict the 
input patterns given output patterns and vice versa.  

2. Reduce the number of highly correlated features in a feature set.  
3. Remove features that are not useful in prediction.  

3.2.1. Fitness 

The fitness of a feature set is calculated using the following methodology.  
1. Divide training data into 5-fold cross validation sets using stratified sampling.  
2. For each cross-validation set, train the simple-BDNN on the subset of features and calculate 

the area under ROC curve for predictions of output patterns in the validation set.  
3. The maximum area under the ROC curve among the 5 would be the fitness for each feature 

set.  
 
 
 
 
 
 



 
 
The Algorithm for feature selection is as described by Figure3.  

 

 
          Figure 3 feature selection algorithm 

 

3.3. Performance of selected features on validation and test sets.  

Upon termination, the subset if selected features ‘best-F’ was as follows.  
1. Topography  
2. Geology Descriptor 
3. Temperature 
4. TM3 
5. TM6 
6. TM7 
 

Their fitness, or the fitness of simple-BDNN when trained using these features on 5-fold cross 
validation sets was 0.933. i.e., the maximum AUC score achieved among the scores for the 5-fold 
cross validation sets. The model corresponding to the highest AUC score as chosen.  

 
The chosen model was chosen to predict the dry or not dry class of each pixel in the test set. The 
area under the ROC curve for test set was 0.83.  

 
 
 
 
 
 
 
 
 
 



 
 

4. robust-BDNN 

The simple-BDNN whilst predicting input patterns from output patterns, faces a near impossible task. The 
output pattern can be ‘1’ or ‘0’ indicating whether a pixel is dry or not. Inferring from this number, an ‘n’ 
dimensional input pattern is not reasonable. Furthermore, every input pattern is mapped to either ‘1’ or ‘0’ 
as its output pattern. It is therefore, important to make the mapping between input patterns and output 
patterns one-to-one.  
 

4.1. Make the dataset invertible 

To make the dataset invertible, the paper proposes adding a feature from input patterns to the output 
patterns. The feature chosen for this task should roughly fulfil the below conditions 
 

1. Not be part of the selected features i.e. best-F.  
2. Should have high variance. Such that addition of this feature leads to more unique input pattern 

to output pattern mappings.  
 

The feature selected for this purpose was ‘altitude’. But the data was still not invertible after this addition. 
Random noise was added to the ‘altitude’ feature. Thus, the data became invertible, and the new problem 
statement was  
 

• Given a 13-dimensional input pattern space consisting of features in best-F.  And a 2-dimensional 
output pattern space corresponding to the class label and altitude. Create a bidirectional network 
that predicts the input patterns given output patterns and vice versa.  

 

4.2. robust-BDNN Architecture 

The robust-BDNN model architecture is as follows 

4.2.1. Predict Class Label and Altitude from ‘best-F’ 

 

 
Figure 4. robust-BDNN output prediction 

 
 
 



The total error in predicting the output patterns EF is sum of  
1. Error in predicted class label probability calculated using binary cross entropy loss.  
2. Error in predicting the altitude calculated using mean squared loss.  

  
 

 
 

4.2.2. Predict ‘best-F’ from class Label 

 
Figure 5. robust-BDNN backward output prediction 

 
The error in predicting the input patterns EB is calculated using mean squared error against the 
original input patterns.  

 

4.2.3. Updating Weights 

The total error for each sample be E = (EB  + EF ). Backpropagation is performed with the intention 
of minimising this total error.  

4.3. Results 

The robust-BDNN was trained on the training set using the stratified k-fold cross validation technique. 5-
fold cross validation set were chosen. The model was tuned to give maximum validation accuracy in all the 
5 validation models.  

  
 The model corresponding to the cross-validation set whose predictions of class label that gave the 
highest area under the ROC curve was chosen. The AUC for the best model on its respective validation set 
was 0.9377 
 
The model gave impressing results of 0.93 AUC for the test set as well.  



 
 

    

  
Figure 6. Classifier ROC Curve on Test Set 

 
A balance between false positives and false negatives is also achieved using a     threshold 
of 0.51.  

 
Class Dry Not Dry 
Predicted Dry 16 3 
Predicted Not Dry 3 16 

Figure 7 confusion matrix on test set with a classifier threshold of 0.51 

Achieving a balance in false positives and false negatives without severely effecting the 
overall accuracy is crucial when devising strategies to combat erosion. The robust-BDNN 
model is able to provide accurate information on the dryness of pixels in the area.  

5. Conclusion and Future Work 

The paper has demonstrated the tremendous ability of bio inspired learning mechanisms like bidirectional 
neural networks and genetic algorithms in solving real world problems. Future work would include 
extending the bidirectional neural network methodology to deep neural networks. Genetic Algorithms could 
also be used in tandem. Further testing on different datasets would also be conducted.  
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