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Abstract. In this paper, I trained an LSTM model to predict subjective beliefs using a physiological signal dataset
and proposed a simple method of combining threshold controlling and principle component analysis to reduce the
number of false positive predictions while keeping the number of correct predictions as high as possible. I also ran a
series of tests, compared the output of different neural network models and published results to prove that the neural

network model and the method I proposed can effectively reduce the number of false positive predictions.
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1 Introduction

Subjective beliefs plays an important role in human’s daily activities, it can influence a person’s mood and his or her
decision making. To measure or predict it, however, proves to be rather difficult since its manifestation varies from
person to person, and it is difficult to measure it with regular quantitative standards. In previous studies, many
researchers tried to use neural networks to predict subjective beliefs given a person’s physiological signals and achieved
good results. But physiological signals are usually complicated and models often suffers from overfitting problems and
yield a large percentage of false positive results.

In the case of a classification problem, a low percentage of false positive results is generally more desirable. It allows
us to combine more evidence from multiple sources to achieve better results[1]. Also models can suffer from overfitting
problems due to a large amount of features, by carefully adjusting the input data, we can also improve the overfitting
problem, and further reduce the number of false positive predictions.

I would like to construct a neural network model and an LSTM model to classify subjective beliefs using the dataset
gathered by Xuanying Zhu, Tom Gedeon and others[2] and use threshold controlling and principle component analysis
to minimize false positive predictions while keeping correct prediction rate as high as possible in order to increase the

reliability and accuracy of the neural network model.

2 Dataset

2.1 Dataset Overview

The datasets used in this paper was created by an experiment. The researchers first invited a few presenters and
prepared some material for these researchers to present. For half of the presenters, the researchers told them that their
material are bogus and asked them to still present them naturally in order to try and manipulate the presenter’s
subjective beliefs. The researchers recorded the presentation as videos and invited several observer to watch the videos.
The observers are then asked to estimate whether the presenter’s subjective belief was manipulated or not and some of
their physiological signals such as Blood Volume Pulse (BVP), Galvanic Skin Response (GSR), Skin Temperature (ST)
and Pupillary Dilation (PD) are recorded to form the dataset[2].



There are two datasets. The first dataset consists of sequential data gathered in the experiment. The dataset has three
levels of directories. The first level of the directory is the participant’s id and gender together with a csv file that
contains labels for each participant-video pair, the second level of the directory are the ids of the videos that each
participant watched, and the third level of the directory has csv files corresponding to BVP, GSR, ST and PD data along
with the starting and ending time of each video. Each csv file has only one column and multiple rows. The first row is
the initial time of the recording session expressed as unix timestamp in UTC and the second row is the sample rate
expressed in Hz. The rest of the rows are data collected by sensors in chronological order, therefore, I will train an
LSTM model to do predictions using this dataset.

The second dataset is a preprocessed version of the previous dataset, which constructs features using the sequential
data in the previous dataset. It has 121 columns and 368 rows. Each row contains the physiological signals gathered
from a specific observer when they are watching a specific video. The first column contains a string that records the
participant id and the id of the video this participant watched. Columns 2 to 35 contains 34 features extracted from the
participant's BVP . Columns 36 to 58 contains 23 features extracted from the participant's GSR. Columns 59 to 81
contains 23 features extracted from the participant's ST. Columns 82 to 120 contains 39 features extracted from the
participant's PD. And the last column contains the label of whether the presenter in this video has doubted about their
belief in the video. 1 represents we didn't manipulate presenters' subjective belief, and 0 means they doubted about what
they presented as we manipulated their belief. I will train a neural network with only fully-connected layers and a

softmax layer to do predictions using this dataset.

2.2 Data Preprocessing

We will apply two different data preprocessing methods on the two datasets. In the first dataset, pupillary data for
participants 26 to participant 34 are missing, and the starting time and ending time of each video does not align with the
the starting time and ending time of the sensors. The sensor for BVP value has a sample rate of 64Hz while the other
sensors has a sample rate of 4Hz, so there are significantly Also, each csv file contains data collected from two videos
instead of one, so some necessary separation has to be done.

Therefore for the first dataset, I first selected the valid part of the BVP, GSR and ST values using the starting and
ending time of the 2 videos. During this process, data in each csv file are separated into two parts based on the video,
and all values that are collected by the senors outside of these time periods is discarded. The PT value is also discarded
because pupillary data for participants 26 to participant 34 are missing. Then I duplicated the values in GSR and ST for
16 times due to the different sample rate, so that their shape matches the shape of the BVP data. In the next step, |
removed several rows data that does not have a corresponding label. In the final step, I normalized the date so that all
the values falls into the range between land 2. I did not normalize the data to 1 because the length of each data sequent
is different and I later applied data padding with zeros.

For the second dataset, all the data except for the first and last column, are of type float and there is no missing data.
Value within each column are pretty close to each other, and there is no significant outlier. Values between each column
varied greatly, some are as big as 40, others are as small as 2x10-3. Therefore I applied min-max normalization to each
column of the data. The preprocessed data is saved in a new csv file.

Also, the 119 columns of features can be categorized into 4 major types: blood volume pulse, galvanic skin response,
skin temperature and pupillary dilation. Therefore, I applied 3 different principle component analysis process to each set
of the4 columns, the 3 different principle component analysis process keeps 1, 2, and 3 components respectively.

During training, the most common cross-validation method would be to randomly shuffle the data and use k-fold
cross-validation. But for human data, a continuous segment of physiological data with more than one data point can
reflect a human’s responses to a stimulus[2]. So training a classification model on random splits of data is not adequate,
unless all data from one human is guaranteed to be within either the training set or the testing set for each run. Therefore,

I used a method called “leave-one-participant-out” [2]. I used a slightly modified version which selects one presenter’s



data as the test set, and use the rest of the data as the training set, repeated for all and averaging to calculate the final

result reported. In comparison, the original researchers used each observer as the test set.[2]

3  Methodology

3.1 Previous Researches

Xuanying Zhu, Tom Gedeon and others used an ensemble of five artificial neural networks, each with a sigmoid hidden
layer of size 100 and an output layer with two output neurons[2]. They trained the neural network with the Adam
optimizer[3] using back propagation with the Cross Entropy loss function. L.K.Milne, T.D. Gedeon and A.K.Skidmore
proposed that adjusting the threshold for the output layer can effectively manipulate the balance of false positive and

false negative predictions[2].

3.2 Model Description

I will use 5 different artificial neural networks to do the classification, and then compare their results to each other. The
baseline model uses the normalized data as input, it has 2 sigmoid hidden layers with 128 and 64 hidden neurons each
and an output layer with 1 neuron and a sigmoid activation function. I used the Adam optimizer[3] and updated the
weights using back propagation with Binary Cross Entropy loss function.

The LSTM model uses the preprocessed sequential data as input. It has a LSTM layer with 6 hidden neurons, and the
output of the LSTM layer will be passed onto an output layer with 1 neuron and a sigmoid activation function. The
output layer uses the output of the LSTM to do the prediction. I also used the Adam optimizer[3] and updated the
weights using back propagation with Binary Cross Entropy loss function.

The other 3 models are the PCA 4 model, PCA 8 model and the PCA 12 model. PCA 4 model has 2 sigmoid
hidden layers with 8 neurons and an output layer with 1 neuron and a sigmoid activation function. PCA_8 model has 2
sigmoid hidden layers with 16 neurons and an output layer with 1 neuron and a sigmoid activation function. PCA 12
model has 2 sigmoid hidden layers with 24 neurons and an output layer with 1 neuron and a sigmoid activation function.
These 3 models also updates weights using back propagation, and uses the same optimizer and loss function as the
baseline model.

There is a hyper parameter @ that controls the threshold of the 4 models’ outputs. @ is a real number between 0 and
1, if the output is larger than @ , the models will predict 1, otherwise the models will predict 0. I tried several values
between 0.4 and 0.7 for theta, and trained the model with different 6 s one by one.

The amount of data used in training the LSTM model is very large so I used a large batch size of 128 and trained the
model for 10 epochs with learning rate a=0.005 and weight decay w=0.1. This is mainly due to the limited computing
power of CPU and GPU, and the batch size and number of epochs should be adjusted if the computing power of CPU
and GPU is better. I trained the other model for 30 epochs, with learning rate a=0.001 and weight decay w=0.1, and the

batch size was set to 10.

4  Results and Discussions

4.1 Effect of the Threshold

Figure 1 shows the training and testing accuracy of the baseline model using different thresholds. As @ gradually
increases, the training accuracy gradually drops and the test accuracy goes up and down. The dataset has 119 features,

but only 367 samples, therefore cause the model to overfit the training data, and the test accuracy becomes inconsistent.



theta | 0.40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70
Training| o ou | g1.95% | 60.70% | 59.47% | 57.38% | 54.45% | 51.87%
AT ACY

Test | eo 7aw | 44.08% | 41.74% | 43.48% | 44.93% | 41.74% | 45. 80%
ACCUTACY

Fig. 1. Different training accuracy and test accuracy under different threshold conditions of the baseline model.

Figure 2 shows the number of correct predictions comparing to false positive predictions and false negative predictions
of the baseline model. We could clearly see that as €@ increases, the number of correct predictions and the number of
false positive predictions both drops, and the model begins to produce more false negative predictions, which is exactly

what we wanted.
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Fig. 2. The figure above shows how the balance of correct prediction, false positive predictions and false negative predictions
changes when ¢ changes for the baseline model. The figure below shows the exact number of each type of predictions for the

baseline model.

We could see that on the training set, a threshold of 0.7 decreased the number of false positive predictions by almost
90%, while losing about 15% of accuracy comparing to a threshold of 0.5. A threshold of 0.6 decreased the number of
false positive predictions by about 54%, while losing only about 6% of accuracy. This shows that if we choose a
threshold smart enough, we could greatly reduce the number of false positive predictions while still keeping a relatively
high accuracy.

Figure 3 shows the training and testing accuracy of the LSTM model using different thresholds. As € gradually
increases, the training and testing accuracy gradually increased, reached a peak value when @ is 0.5 and then

gradually drops. This is because when 6 is larger or smaller than 0.5, we are actually using the threshold method to



control the number of false positive and false negative predictions, therefore we will lose some accuracy. The

exceptionally high test accuracy when & is 0.4 is probably caused by noise.

theta | 0.40 0, 45 0, 50 0, 55 0, 80 0, 65 0, 70
Traimng | oo oin | 6o 24% | 60.50% | 58.97% | 57.11% | 55.35% | 52.61%
ACCUTACY

Test | oo taw | am.21% | 490 78w | 47, 42w | 46, 14w | 47, 46w | 45, 80w
ACCUT RS

Fig. 3. Different training accuracy and test accuracy under different threshold conditions of the LSTM model.

Figure 4 shows the number of correct predictions comparing to false positive predictions and false negative predictions
of the LSTM model. As € increases, the number of correct predictions and the number of false positive predictions
both drops, and the model begins to produce more false negative predictions, similar to the results of the baseline model.

When @ is larger than or equal to 0.6, the number of false positive predictions dropped to 0, as desired.
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Fig. 4. The figure above shows how the balance of correct prediction, false positive predictions and false negative predictions

changes when ¢ changes for the LSTM model. The figure below shows the exact number of each type of predictions.

By comparing the LSTM model and the baseline model, we can prove that the threshold method can work on both a
simple neural network model and other more complicated deep learning models. Also, the threshold controlling method
is much more effective on the LSTM model, since the number of false positive predictions can be successfully reduced

to zero when minor changes are applied to the threshold.



4.2 Effect of Principle Component Analysis

Figure 5 shows the the training and testing accuracy of the PCA_8 model using different thresholds. Figure 6 shows the
number of correct predictions comparing to false positive predictions and false negative predictions of the PCA 8§
model.

Comparing to the result of the baseline model, the overall training accuracy dropped significantly, but the test
accuracy increased slightly, especially when @ is greater than or equal to 0.6. This is because principle component
analysis reduces the number of features in the original dataset, and therefore the model is less likely to suffer from
overfitting problems.

Also, notice that when @ = 0.6, the number of false positive predictions in the test set dropped to 0, and the number
of correct predictions only dropped by about 6% comparing to @ = 0.4 . Even greater improvements could be seen
when comparing @ = 0.6 to the baseline model. The number of false positive predictions dropped significantly, and
the number of correct predictions increased slightly. This could suggest that when dealing with dataset that has a
relatively large amount of features, principle component analysis can enhance the effect of threshold control, making

the model even more reliable and accurate.

theta | 0. 40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70
Tralning| o sou | 52 58% | 59.43% | 50.04% | 48.41% | 48.41% | 48. 41%
ACCUTACY

Test | o) mow | 51.30% | 44.35% | 43.48% | 48.41% | 48.41% | 48, 41%
ACCUTACY

Fig. 5. Different training accuracy and test accuracy under different threshold conditions of the PCA 8 model.
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Fig. 6. The figure above shows how the balance of correct prediction, false positive predictions and false negative predictions

changes when ¢ changes for the PCA 8 model. The figure below shows the exact number of each type of predictions.

4.3 Effect of Different PCA results

Further more, I studied the effect of different PCA results on the output of the model. Figures 7 and 8 shows the result
of the PCA_4 model which uses only 1 principle component, and Figures 9 and 10 shows the result of the PCA 12
model which uses 3 principle components. In comparison, PCA_8 model uses 2 principle components and the baseline
model used all the components(without PCA).

We could see that if we use more principle components, the training and testing accuracy of the model with smaller
0 s will tend to increase, but it requires larger @ s to effectively reduce the number of false positive prediction. If we
use less principle components, the training and testing accuracy of the model with smaller €'s will tend to decrease, but
we could more effectively reduce the number of false positive predictions while maintaining the number of correct
predictions.

Also, note that when applying PCA and reduce the number of features to a limited number, if @ reaches a value
that is large enough, the number of false positive predictions will eventually reach 0 and we will get a fixed accuracy (in
this case it is 48.41%). This means that we should not always aim for large s or large number of features, instead we

should be more flexible and adaptive when choosing the appropriate PCA result and & .

theta | 0.40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70
Training| o cou | 51 5o | 52.10% | 48.41% | 48.41% | 48.41% | 48. 41%
AT ACY

Test | o) mow | 51.50% | 40.20% | 48.41% | 48.41% | 48.41% | 48. 41%
ACCUTACY

Fig.7. Different training accuracy and test accuracy under different threshold conditions of the PCA 4 model.
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Fig. 8. The figure above shows how the balance of correct prediction, false positive predictions and false negative predictions

changes when ¢ changes for the PCA 4 model. The figure below shows the exact number of each type of predictions.

theta | 0.40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70
Training| co uon | 57.31% | 60.74% | 54.52% | 49.05% | 48.43% | 48. 41%
AT ACY
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Fig.9. Different training accuracy and test accuracy under different threshold conditions of the PCA_12 model.
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Fig. 10. The figure above shows how the balance of correct prediction, false positive predictions and false negative predictions

changes when ¢ changes for the PCA 12 model. The figure below shows the exact number of each type of predictions.

Conclusion and Future Work



I have studied the effects of applying different thresholds on the output layer and applying principle component analysis
when using sigmoid activation function to do classification problems. In this paper I demonstrated that by applying an
appropriate threshold on the output layer, we can significantly reduce the number of false positive predictions, while
maintaining the number of correct predictions to be as high as possible. I have also found evidence that applying
principle component analysis on dataset with large number of features can prevent the model from overfitting and
enhance the effect of threshold controlling.

This method can also be used in some other tasks such as cancer detection. If the result of a cancer detection is false
negative, it will delay the best treatment time, and the cancer will develop from the early stage to the late stage, which is
unacceptable. In this case we can use the threshold controlling method to reduce the number of false negative
predictions and increase the number of false positive prediction.

Some improvements can also be made to the LSTM model. In this paper, I only used the output of the LSTM model
after all the sequential data has been processed, but we can actually make use of the outputs at each hidden state to
continuously keep track of the presenter’s subjective belief. For example, we can extend the dataset by including the
specific parts of the presentation where the presenter is most suspicious about and use the output of each hidden state in
the LSTM to try and predict the presenter’s subjective belief at each time step. This model can be used to dynamically
track a person’s subjective belief over time.

There are also several drawbacks on this method that needs to be pointed out. The overall accuracy of the LSTM
model and the other neural network model are all pretty low, at around 48% - 50%. One possible explanation is that the
model I used in this paper is relatively simple and hyper-parameters are not optimized enough. A way to achieve a
higher prediction accuracy is that we can use a pre-trained model and fine tune the model using our dataset, and then we
can test the threshold controlling method on the new model. Also, if the prediction accuracy increases by a lot, the
effectiveness of the threshold controlling method could possibly decrease, and further research on this needs to be

conducted.
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