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Abstract.  

The rise in popularity of neural networks was supported by a wave of significant hardware improvements in the past 

decade. Yet, for a consumer grade lightweight hardware, such as an AR/VR headset, supposedly useful image 

manipulation predictions remained challenging. Learning from a convoluted eye gazing dataset will require deep 

learning that can be cumbersome. To effectively make a simultaneous image manipulation prediction, Cascade 

Correlation with One dimensional pass on Binary prediction (CasCorOB) and CasCorOB with dropout (CasCorBD) is 

proposed. Adapted from Cascade Correlation (CasCor), CasCorBD (and CasCorOB) is a binary prediction architecture 

that is advantaged on better testing accuracy on eye gaze dataset when compared against a baseline 2 output CasCor 

and 3 layer fully connected network, at 27.40% and 23.89% increased testing accuracy on average. CasCorBD is strictly 

better in accuracy and training speed against CasCorOB, whereas CasCorOB is strictly better than CasCor. CasCorBD 

is 97.45% faster than CasCor. While human participants predicted with 55.7% accuracy on image manipulation, 

CasCorBD was able to detect with 67.81% accuracy on average, based on the second-hand information – eye gaze 

habits of the participants. Future works can be made to this architecture by employing a varied dropout rate for different 

connections in the network. Testing against the changes in Pearson’s correlation and zero averaged variables may also 

show the performance benefit distributions between CasCorOB and CasCor. Nevertheless, with further research, the 

use of this architecture in wearable electronics may better comprehend user intentions for better personalized user 

experience.  
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1   Introduction 

Traditionally, neural networks required commercial grade machines that possess higher magnitude of processing powers, 

to compare with a personal computer. Upon the transfer of neural network processing platform to the more efficient 

graphics processing units (GPU), in additional to the introduction of GPU-based dedicated machine-learning hardware, 

consumer grade computers are becoming more accessible to training big datasets at a reasonable time scale [1].  

The popularity and expectations for AR/VR (or “XR” for extended reality) headsets are in the rise as of late. With aim 

to bring automation of trivial tasks in real life, XR is the bridge to connect machines to reality. Complex functionalities, 

such as real-time image manipulation detection, is more efficient with XR that mirrors the vision of the user, when 

compared to the traditional computer method that requires a scanner. To review the image live and adjust the predictions 

adaptive to the individual user profile eye gaze behaviours, XR devices must be able to simultaneously train the algorithm. 

However, XR standalone headsets has a lightweight processing performance and gathers convoluted unprocessed sensory 

data. In additional to the rise of photo editing software quality, better image manipulation detection software is 

increasingly essential to combat the increasing pattern recognition, putting pressure to the further popularization of XR 

as a productive utility. Further to the growing expectations for XR, it seeks stricter neural network architectures that is 

more accurate (i.e. more hidden neuron layers) while requiring it to be efficient (i.e. fewer epochs) [2]. To improve 

accuracy and speed of neural network predictions, many architectures and filtering processes had been proposed dating 

back in the 1950’s, extending to the growth in popularity of the recent decade.  

  



1.1   Cascade Correlation (CasCor) 

In 1990, Fahlman E proposed a self-automating and lighter processing, data-relationship driven neural network 

architecture termed “Cascade Correlation” (CasCor) [3]. A CasCor neural network is trained in the way that hidden layers 

will cascade at each step, with one hidden neuron at each layer. The connection weight values from the input to the hidden 

neurons will remain unchanged, termed “frozen”, to retain the hidden neuron as a permanent feature set. This allowed 

neural networks to be light-weight and broadened automatically. 

 

Fig. 1. A conceptual graph depicting frozen and live weights between neurons. Each interjection between two lines is the weight shared 

for the corresponding connections. The icons on the interjection represents a different configuration of the weights. A box represents 

the weight is “frozen”; a cross represents the weight is “live”. 

A CasCor network model begins with a fully connected network containing only input and output neurons. They are 

connected by weights that can be modified in back propagation, called “live” weights. The model is trained ordinarily 

until improvement becomes stagnant. A pool of candidate neurons with distinct incoming weights will be trained in the 

model with two conditions: 1) the new hidden neuron will only be connected to the previously trained hidden neurons 

and the input (no connections to the output), 2) the loss function, denoted as S, is calculated by the correlation between 

the activation of the candidate node 𝑉 and the residual output error 𝐸. This residual error is the difference between the 

sum of the output of the network and the target value. We define S as: 

𝑆 = ∑ | ∑(𝑉𝑝 − 𝑉)(𝐸𝑝,𝑜 − 𝐸𝑜)|

𝑝𝑜

 
(1) 

A backward pass on S completes the epoch for the candidate model. Until there is no improvement in S of each 

candidate nodes, a permanent hidden neuron will be injected to the original network, using the best candidate node in the 

pool. All connections to this hidden neuron will be frozen, and then the training process will repeat. As a result, CasCor 

network is able to significantly improve the speed and efficiency for convergence in deep learning, by reducing training 

redundancy in frozen connections [3]. 

1.2 Dropout Technique 

Srivastava proposed the dropout technique in 2013, where zeroing neurons (and its connections) with random probabilities 

can address overfitting and slow networks [4]. When a unit is randomly dropped from the network, it prevents neurons 

forming an excessive reliance over neighbouring units.  

During a training epoch, hidden neurons (or sometimes input neurons) will be randomly removed temporarily from the 

network, termed a “thinned” neural network. The thinned neural network takes a similar approach to the theory outlining 

the role of sex in evolution. Sexual reproduction creates offspring that takes the genes of their parents. Rather than a 

random pairing of partner, offspring with the gene copy of a successful parent may exploit the survivability for natural 

selection. Another method to increase survivability, the mixability of genes, where multiple genes work together in 

collaboration can make genes robust together, however, they are flawed on its own. Hence, by occasionally thinning some 

genes in the group, no genes must rely on their exact partner to be present at all times and must learn to mitigate the 

shortcomings. Similarly, the dropout technique ensures that each neuron is robust on its own and own an important role 

even without the neighbouring units, to regularize each unit to make it generalizable.  

The resulted problem may be noisy, however more adaptive, and more efficient. Removing units may induce noise, 

however, it strengthens the individual neurons to become independent. It trains their flexibility to adapt to unexpected 

situations, while training less neurons at each epoch. 

  



1.3   Binary Prediction Neural Networks 

Further from architectures and techniques, using a more optimised argument to be passed through the network can reduce 

the passing redundancy while improving weight update relevancy. With modification of CasCor, a binary prediction 

oriented neural network is hypothesized to 1) improve efficiency while maintaining the same accuracy, and 2) have a 

higher testing accuracy on average, when compared to a baseline CasCor network and a baseline fully connected network.  

To limit the needs to calculate poly-dimensional data, only a representative single value passing from each instance 

should be used. It is computationally more efficient than a multi-value passing for each instance, for example passing a 1 

instead of 2 dimensional tensor.  

The binary prediction oriented architecture should speed up the convergence, meanwhile improving the accuracy on 

average. In comparison with training multiple neurons at once, training one hidden neuron at a time benefits from a 

focused loss reduction process, where loss can be reduced by receiving more focused input signals generated from fewer 

other hidden neurons.  

1.4   Eye Gaze Dataset 

The eye gaze data is collected over 80 participants to investigate the ability for humans to perceive manipulated images 

[5]. For all images, each participant is provided context for image manipulation techniques, and then presented with 

images. A series of questions were asked to evaluate their thought processes, and then the participants would vote whether 

the image was manipulated or not. Eye gazing data is tracked throughout the image viewing processes and recorded. 

The dataset contains 8 features for image manipulation prediction from eye gaze. Ground truth of the image 

manipulation, in addition to supporting data related to eye gaze is included in the dataset. Each participant and image sets 

contain a unique ID for identification. Eye gaze fixation count and duration on the image and at the target area were 

recorded.  

Eye gaze data was captured using two Facelab 5.0.2 infra-red cameras and a single IR light emitter pod, that is centrally 

located below the image displaying monitors. Video evidence of each experiment was recorded using Eyeworks v3.8, 

including for the use to design, deliver, and analysis the experiment. 

2   Method 

2.1   Cascade Correlation with One dimensional pass on Binary prediction (CasCorOB) 

Cascade Correlation with One dimensional pass on Binary prediction (CasCorOB) architecture is proposed in this paper 

to make binary predictions. In additional to the aforementioned CasCor architecture, CasCorOB model is 1) passing a 

one-dimensional value for each neuron output, 2) adopting hyperbolic tangent activation functions, and 3) utilizing the 

Pearson’s correlation in replace with S from formula (1) as loss function.  

Output classes are represented by the range of a single value rather than a SoftMax matrix. It should reduce processing 

performance overhead by passing simpler values. The binary class is represented by a value range, where values are 

averaged to 0, meaning small values account to closer to average and large values are further from average. In image 

manipulation, a negative value is false and positive value is truth. 

A hyperbolic tangent activation function is used in parallel with the value range for weight update relevancy. In 

comparison with a sigmoid activation function, it mitigates exploding or diminishing weights by positioning the average 

at 0, meanwhile retaining the binary property of representing 2 prediction classes [6]. 

Correlation is adapted in place of the suggested “correlation” loss function that was mentioned in the Fahlman’s paper. 

In fact, the correlation mentioned in the paper is a covariant, which simply evaluates the positive and negative trends. 

This is however not useful in determining the numerical difference from the true value trend, i.e. how close the predictions 

are to the actual trend line. Pearson’s correlation achieves this instead. 

 

 

2.2   CasCor on Binary prediction with Dropout (CasCorBD) 

CasCorOB with Dropout technique (CasCorBD) architecture is another proposal in this paper to make further training 

efficiency for binary predictions. CasCorBD builds upon the CasCorOB architecture, such that network training speed is 

further improved and can be generalized to lower the hidden neurons required.  

Dropout takes place in the general training network, which is separate from the candidate training process. While the 

partial network is frozen, some inputs from the input and hidden neurons can be removed of the network to further reduce 

processing power required on each epoch. Meanwhile, the loss of certain neurons will induce more losses and create 

noise. Due to the more frequent loss from any part of the original the network, the output neurons are strengthened to be 

more robust and less lenient from other neurons. The resulting network would be regularized and require fewer hidden 

neurons. CasCorBD will require more evaluations and k-fold validations as a result of the increased noise. 

To demonstrate the performance of a binary prediction oriented network on an image manipulation dataset, a three 

layer fully connected network and a two output CasCor network will be used as a baseline. It will aim to measure the 

accuracy, epochs counts, elapsed time, and binary prediction oriented techniques of each neural network, for predicting 

image manipulation from an eye gazing behaviour.  

 



2.2   Data Pre-processing 

The collected data was entirely numeric, including the truth value for the image manipulation in each instance. However, 

the data is distributed vastly between each feature. A z-score normalization is used to correct the imbalance and confines 

the outliers. While retaining the scaling between the data, it also shifts the average to zero for better distinction. As a 

result, it initializes the higher than average values to be positive, while lower than average values to be negative, which 

helps long-term scaling of the values in the long run in a neural network.  

The features set contains 7 independent variables in total – 4 useful variables and 3 inessential variables. The adopted 

features are “num_fixs“ for number of eye gaze fixations of image fixations, “fix_dur“ for eye gaze fixation durations in 

seconds of image fixations, “num_man_fixs“ for number of manipulated area fixations, “man_fixs_dur“ for fixation 

durations in seconds of manipulated area fixations. The discarded variables are “vote“ for participant‘s vote, “participant“ 

for participant ID, and “image“ for test image ID, which were discarded because they are keepsake datasets and do no 

provide indications for image manipulation prediction. 

The dependent variable “image_manipulated” is an integer to indicate whether the corresponding independent 

variables are a response to an original image (“0”) or a manipulated image (“1”). 

Table 1.  Data distribution of its corresponding features. Excluding feature vote, participant, and image. 

Feature Name Minimum Maximum Average 

num_fixs 6 215 81.8 

fix_dur 0.97 63.5 18.9 

num_man_fixs 0 115 16.1 

man_fixs_dur 0 32.3 12 

image_manipulated 0 1 0.5 

 

The overall dataset is split in an 8:2 ratio for training data and testing data. A mix of 5 and 10-fold validation is used 

to evaluate the accuracy. 

2.3   PyTorch Framework 

PyTorch is an optimized, open sourced tensor library for deep learning. It provides developers and researchers a higher 

level accessibility to construct, assess, and evaluate neural network models [7]. It helps maintaining code readability 

especially in a neural network with a convoluted structure. Furthermore, a comprehensive documentation and PyTorch 

forums are easily accessible online, hence it is chosen to build the CasCorOB network. 

2.4   Machine Specifications 

Each neural network is trained and tested on a machine with a 4-core 8-thread 4.5Ghz CPU and a 16GB 2133MHz 

memory. AI processor with 272-Tensor Cores is used in the RTX3080 GPU in the machine. 

3   Results 

The eye gaze data is trained in the proposed CasCorBD and CasCorOB, with the baseline two outputs CasCor and 

three layer fully connected network (“FullyConnect”).  

 

Table 2.  Hyperparameters used for a CasCorOB, CasCorBD, CasCor, and FullyConnect  

 Epochs (max) Hidden 

Neurons 

Learning Rate  Candidate training 

learning rate 

Input 

Neurons 

Output 

Neurons 

Activation 

Function 

CasCorBD 100 5 0.01  0.1 4 1 tanh 

CasCorOB 100 7 0.01  0.1 4 1 tanh 

CasCor 100 6 0.01  0.1 4 2 leaky ReLU 

FullyConnect 100 7 0.01 - 4 1 tanh 

* tanh = hyperbolic tangent 

 

All networks are initialized with 4 input neurons and Adam optimizer is used. The networks are capped at a more than 

required number of epochs, 100, for hard limiting. Stagnant loss improvement is determined by a within 1% change and 

network is pre-emptively terminated before maximum epochs when it is stagnant. 

In CasCor, CasCorOB, and CasCorBD, each candidate pool contains 15 candidates, and the learning rate for the 

candidate training is higher, at 0.1 for exploration.  

  



Hyperparameters for the (maximum) number of hidden neurons of all networks, and the dropout rate for CasCorBD 

are measured through statistical testing to find each of their best results. The number of hidden neurons is tested against 

10 values: [1, 2, ...,10] and dropout rate is tested against 6 values: [0.5, 0.6, ...,1.0]. For CasCorOB, CasCor, and 

FullyConnect, each value of the two hyperparameters are tested against 5 evaluations, each with a 5-fold validation; for 

CasCorBD, it is 10 evaluations, each with a 10-fold validation instead for stricter measurements to combat higher noise. 

Table 3.  Averaged Testing Accuracy  

Hidden Neurons CasCorBD, % CasCorOB, % CasCor, % FullyConnect, % 

1 62.98 60.27 47.45 49.84 

2 64.80 62.98 48.26 50.27 

3 66.25 63.28 51.07 52.74 

4 66.30 61.11 48.77 53.83 

5 67.81 60.11 50.12 54.58 

6 65.40 60.30 53.23 52.76 

7 64.86 63.62 50.37 54.74 

8 64.12 57.89 48.60 52.64 

9 63.09 61.45 51.64 52.65 

10 63.93 60.87 47.58 53.02 

Avg 64.95 61.19 49.71 52.71 

 

After statistical testing, 5, 7, 6, 7 (maximum) hidden neurons were chosen for CasCorBD, CasCorOB, CasCor, and 

FullyConnect respectively for the best testing results.  

The dropout rate at 0.9 in CasCorBD proves to provide the best testing accuracy, ahead of the wost performing dropout 

probability at 1.0 by a -2.36% edge.  

 

 

Fig. 2. CasCorBD dropout probability (y axis) against testing accuracy (x axis). Each value is tested against 10 evaluations, with 

10-fold validation on each evaluation. 
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Fig. 6. Best FullyConnect network at 7 hidden neurons with 5 

evaluations each averaged over 5-fold validation. 

 
Fig. 5. Best CasCor network at 6 hidden neurons with 5 

evaluations each averaged over 5-fold validation.  

 
Fig. 4. Best CasCorOB network at 7 hidden neurons with 5 

evaluations each averaged over 5-fold validation. 

 
Fig. 3. Best CasCorBD network at 5 hidden neurons with 10 

evaluations each averaged over 10-fold validation.  



 

CasCorBD is best at image manipulation detection at a testing accuracy of 67.81%, whereas CasCorOB has the greatest 

(highest-) training accuracy of 70.32%, on average. The lowest testing accuracy is 53.23% from Cascor, meanwhile the 

lowest training accuracy is 66.10% from CasCorBD. CasCor training and testing accuracy percentage difference is 14.67, 

FullyConnect is 13.29, CasCorOB is 6.61, and CasCorBD is 1.71. 

 

Table 4.  Precision and Recall of the Best networks evaluations 

 CasCorBD CasCorOB CasCor FullyConnect 

Precision 0.65 0.62 0.54 0.56 

Call 0.80 0.72 0.57 0.48 

CasCorBD is the strictly the most relevant architecture, which returns the most relevant and most of the relevant predictions at 0.65 

precision and 0.80 call. This can also be seen from the confusion matrices in Appendix 2, 3, 4, and 5. CasCorOB is strictly the second. 

FullyConnect returns most relevant results at 0.56 than CasCor at 0.54 precision. CasCor returns most of the relevant results at 0.57 

than FullyConnect at 0.48 call.  

Table 5.  Efficiency for Each Evaluation 

 CasCorBD CasCorOB CasCor FullyConnect 

Fewest epochs 19 7 8 9 

Seconds, s 4.48 15.02 175.35 0.27 

 

The best CasCorBD, CasCorOB, CasCor, and Fully connect networks required 19, 7, 8, 9 epochs respectively for each 

evaluation. However, in a more realistic view, it takes 4.48, 15.02, 175.32, and 0.27 seconds respectively to train the 

model on each evaluation, 5-fold each. FullyConnect required the least time for each evaluation, while CasCor required 

the most. CasCorOB required only 8.57% of the time CasCor used to train the network. Meanwhile, CasCorBD required 

only 29.83% of the time CasCorOB used to train the network. 

 
 

Table 6.  Percentage Difference in CasCorBD from CasCorOB, CasCor, and FullyConnect. 

 from CasCorOB, % from CasCor, % from FullyConnect, % 

Testing Accuracy 6.59 27.40 23.89 

Fewest Epoch count 171.43 -12.50 -11.11 

Seconds -70.18 -97.45 1571.53 

 

CasCorBD is strictly better than CasCorOB and CasCor in a realistic approach, where both test accuracy is higher and 

time cost is lower to train the network. The most significant improvement for test accuracy is CasCorBD from CasCor, 

at 27.40%. In the contrary, although CasCorBD is 23.89% more accurate than FullyConnect, it also requires ~15times 

more seconds to train the network.  

 

 

 

 

 

 

 

 

Fig. 7. Averaged best testing accuracies and highest-training (of each evaluation) results of each the network architectures. Best as 

defined by the average highest testing accuracy for some hidden neuron counts of its own architecture (5, 7, 6, 7 for CasCorBD, 

CasCorOB, CasCor, and FullyConnect).  
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4   Discussion 

As hypothesised, the binary prediction oriented networks (“BPO networks”) – CasCorBD and CasCorOB both performed 

better than the baselines – two output CasCor and three layer network (FullyConnect) in regard to testing accuracy as 

seen in Table 6. CasCorBD even outperformed CasCorOB in generalizability, fewer hidden neuron required, and training 

time required as a result of the self-induced loss technique from network thinning, as shown in Table 3 and 6. This process 

had made the output neuron connections to be more robust, such that they are better at mitigating knowledge gaps from 

not yet known inputs. Although CasCorBD had noisier data as seen in Fig 3 compared to Fig 4, 5, and 6, the testing 

accuracy as shown in Fig 7 have an inversed expectation where testing is better than the training accuracy.  

Regardless, the BPO networks performed more accurately than CasCor due to either the change in loss function or the 

0 averaged value passing. As suggested, the Pearson’s correlation loss provides more relevant value differences between 

the candidate to the target loss, whereas the 0 averaged values mitigate the exploding gradients. While the evidence clearly 

implies a flat 14.58% and 10.39% improvement from such changes, it is however unclear what are the distribution of the 

benefits between the two changes. 

The efficiency improvement is greater, however debatable, from BPO networks against the baseline networks. The 

number of epochs required is sometimes way worse, where CasCorBD required around twice the amounts of epochs as 

others due to the unsettling loss noise. However, in a more realistic sense, the BPO networks performed faster convergence 

from CasCor. From CasCor to CasCorOB, passing a one-dimensional value in the network, as opposed to multi-dimension 

proved to improve the speed by 91.43%. From CasCorOB to CasCorBD, applying the dropout technique proved to 

improve the speed by 70.18%. CasCorBD was not able to outperform FullyConnect in speed, at ~15times slower, however 

the performance gain may be of more significant value.  

In certain cases, epoch count maybe high, but time taken to train is low as shown in figure 3, 4, 5, 6 and table 5. It 

shows that CasCorBD is extremely efficient in each epoch as opposed to CasCorOB and CasCor. CasCorBD training 

time efficiency cannot be compared to FullyConnect because the latter could not reach the reasonably same level of 

prediction accuracy. Regardless, each CasCorBD, CasCorOB, and CasCor epoch is evidently more computationally 

intensive compared to the FullyConnect neural network. 

While participants can predict an image manipulation with 56.0% accuracy on average, CasCorBD was able to make 

a prediction at 67.81% accuracy on average, based on the participants’ eye gazing behaviour. CasCorBD was able to 

indirectly predict image manipulation better than a human using first-hand information. 

 

CasCorBD is less prone to local minimum (loss) as a result of spikes. In Fig 6, the evaluation #4 (red line) in a fully 

connected network shows the stuck loss descent at a local minimum, which as a result converges into a poor loss value. 

Better loss values are evident as other evaluations of the same architecture is able to achieve lower loss values. This is 

also observable by the large distribution of testing accuracies from the 10 evaluations, as shown in Appendix 2. The 

variability of the network from dropouts in CasCorBD has shown to overcome this issue. However, the loss value is also 

noisier at a greater magnitude, where the peak and the troughs of the spikes are distributed at most ±0.1 and stabilized to 

±0.05 every 3-5 epochs, as seen from Fig 8 as an example. Similar issue can be seen in the CasCorOB network from Fig 

4, but not in CasCor network from Fig 5, suggesting that random candidate unit weight initialization may not be the cause. 

As a result, the loss becomes difficult to converge, as the dropout of neurons across the net is unpredictable and the 

suitability of each additional neuron relies on the random weight distribution for the pool of candidates. 

  

 

Fig. 8. Example of CasCorBD overtraining at 20 hidden neurons. 



5   Future Work 

CasCorBD requires further research to support the belief in performance boost. It requires rigorous testing on other 

datasets that could prove the claim for its better performance against both CasCor and a traditional 3 layer fully connected 

network. 

To finetune the network, excluding the already tested dropout rate and the hidden neuron count, other hyperparameters 

can be modified for general performance boost. For example, the number of candidates and learning rates may be lowered 

to reduce processor performance overhead to help with efficiency.  

Understanding the Pearson’s correlation and the zero averaged variables may reveal the performance benefits of each 

change made from the CasCor to CasCorOB architectures. This can be approached by training two versions of the CasCor 

architectures, each with the separate changes. It may help deduce the benefit distributions between the two techniques. 

In addition, the dropout rate for each neuron may be modified to vary differently at different connections of the 

network. A higher dropout rate for earlier hidden neurons may encourage newer hidden neurons to be less reliant to the 

significant feature sets (from the older hidden neurons). As a result, this greater independency may reduce large loss 

spikes as seen in the BPO networks – Fig 3 and Fig 4.  

Nevertheless, further research for CasCorBD is worthwhile, reasoning to its more generalizable and concurrent 

property. The architecture is not only able to make a more accurate prediction than a human, but also make an accurate 

prediction simultaneous to a decision making process by a human, all while the network is retrained and adaptable to the 

user’s own profile. This could be applicable to cybernetics and bionics, including smartphones and XR devices, as 

accurate and fast predictions of the user intentions would better personalize and support the user experience. It should be 

noted that no computer vision should be required to perform well, although a labelled dataset is required. As demonstrated 

by the eye gaze behavioural data, the second hand information is already sufficient to predict image manipulation more 

accurately than a human with first-hand information. 
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Appendix 

Appendix 1. Full testing accuracy against different (max) hidden neuron counts on CasCorBD, CasCorOB, CasCor and FullyConnect 

architecture. 

 

 

Hidden 

Neurons 

CasCorBD, % CasCorOB, % CasCor, % FullyConnect, % 

1 63.74 67.29 66.58 57.35 

2 61.98 64.83 67.11 62.45 

3 67.77 67.16 68.12 62.96 

4 65.12 66.26 67.03 65.95 

5 66.10 70.32 68.05 67.45 

6 65.66 66.69 67.90 61.85 

7 63.39 70.23 66.80 68.03 

8 67.16 68.48 69.20 66.85 

9 65.35 68.88 66.38 65.66 

10 64.45 69.83 67.63 66.69 

Avg 65.07 68.00 67.48 64.52 

 

Appendix 2.  Best FullyConnect Confusion Matrix 

 Predicted Positive Predicted Negative 

True Positive 452 493 

True Negative 349 566 

 

Appendix 3.  Best CasCor Confusion Matrix 

 Predicted Positive Predicted Negative 

True Positive 534 411 

True Negative 459 456 

 

Appendix 4.  Best CasCorOB Confusion Matrix 

 Predicted Positive Predicted Negative 

True Positive 682 263 

True Negative 413 502 

 

Appendix 5.  Best CasCorBD Confusion Matrix 

 Predicted Positive Predicted Negative 

True Positive 755 190 

True Negative 409 506 

 

 

 


