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Abstract. This paper investigated an artificial dataset of patients’ medical observations and diagnoses with the aim of 

producing a robust classifier that could handle noisy measurements. This classifier was a CASPER neural network 

whose hyperparameters were tuned using a bespoke evolutionary algorithm. To force robust classification, it was 

trained with a substantial degree of noise added to the dataset (𝜎 = 60% of range), and it was able to achieve an MSE 

of 0.036 as well as perfect classification on the original test data. In addition to the classifier, this process provided a 

set of good hyperparameters for CASPER, however some of these differed substantially from the parameters suggested 

by CASPER’s authors. It was unclear whether these hyperparameters were really optimal, or whether they were one of 

many acceptable combinations that would work well on the simple classification task considered. This makes it unlikely 

that they would generalise well to other tasks. The evolutionary algorithm itself appeared to work reasonably well, 

however it was very difficult to evaluate its performance due to computational resource limits. 
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1 Introduction 
This paper aims to analyse a dataset [3] of medical observations about patients such as temperature and blood pressure, 

and used them to develop a robust, generalisable model for the purpose of hypothesising diagnoses about yet-unseen 

patients. Although SARS is no longer a common diagnosis and the dataset only includes a small number of medical 

conditions, developing a similar classifier on an extended dataset with more medical conditions could potentially be very 

useful for assisting doctors in diagnosing patients and quickly alerting them of patients likely to have dangerous or 

contagious medical conditions.  

The particular dataset [3] analysed considered normal patients, and patients with three different medical conditions: high 

blood pressure, pneumonia, and SARS. Patients are either normal or have one of the specified conditions, so no compound 

conditions were present. There were a total of 4000 patients, with 1000 in each of the four categories. 

The features in the dataset include a variety of observations and basic measurements about the patients. These are: 

temperature, (degree of) nausea, blood pressure, and (presence of) abdominal pain. The temperature measurements were 

taken at four different times of day: 0800, 1200, 1600, and 2000. The blood pressure measurements included separate 

systolic and diastolic values. Since the paper [3] aimed to classify the patients using fuzzy logic methods, each 

measurement was pre-processed into either two or three labels, with the features taking the form of a fuzzy membership 

value on [0, 1] for each label. The labels are presented in table 1. 

Table 1: measurements and fuzzy labels in the data [3] 

Measurement Associated fuzzy labels 

Temperatures (0800, 1200, 1600, 2000 hours) ‘Slight’, ‘Moderate’, ‘High’ 

Nausea (single measurement) ‘Slight’, ‘Medium’, ‘High’ 

Blood pressure (systolic and diastolic) ‘Slight’, ‘Medium’, ‘High’ 

Abdominal pain ‘No’, ‘Yes’ 

 

Fuzzy sets are a method of data classification initially proposed by Zadeth [6]. They are analogous to conventional sets 

in the sense that they are collections of elements, but they capture degrees of membership by assigning a membership 

value on [0, 1] [6]. In the context of this dataset [3], the fuzzy sets are used as a replacement for exact measurements, in 

order to allow the data to be processed using fuzzy logic methods. 

Since this paper uses a neural network algorithm, CASPER, the use of fuzzy labels is unnecessary, and it was of interest 

to be able to convert the fuzzy labels back to measurements, normalised or otherwise; however CASPER is also capable 

of using the fuzzy labels as input directly. It is therefore important to understand how the data were generated. 



It was stated [3] that the data were artificially generated, but the process used was not explained. Furthermore, it is unclear 

whether the data were directly generated as fuzzy labels or whether they were generated in another form and converted. 

The fuzzy signature used by [3] to classify them was originally designed in [4]. [4] listed what labels were included but 

did not include numerical values for them. The distributions of the data were thus analysed manually to determine the 

numerical meanings of the labels. 

 

Figure 1: boxplot of each of the labels in the data. All labels are in the order shown in table 1 

By analysis of the normal data, it seems that patients usually had a ‘slight’ temperature at all four times measured, and 

had a small membership in the ‘moderate’ category. This suggests that the labels indicate a temperature range where 

‘slight’ is at or near a normal temperature for a patient, rather than an indication of a measured abnormal condition as the 

label would appear to indicate. Similarly, a ‘slight’ blood pressure appears to be a nominal measurement. In all cases, all 

patients were strongly members of at least one label. 

As a result, it was assumed that a non-fuzzy representation could be constructed by defining the labels to represent 

uniformly spaced points with the smallest being 0 and the largest being 1. This assumption allowed a real value on [0, 1] 

to be generated by taking the membership-weighted average of the labels. The defuzzified data are shown in figure 2. 

 

Figure 2: defuzzified representation of the medical dataset. Values are presented in the order corresponding to table 1 

Upon inspection of both the fuzzy and defuzzified representations, it can be seen that the data in each category have a 

very small variance on each feature and that there are no apparent outliers. Furthermore, for any chosen pair of categories, 

several distinguishing features can be found such that there is no overlap between the values. Thus it is expected that the 

data are easily separable. This is confirmed in the paper [3], which was able to completely separate it using cascaded 

fuzzy signatures. 

2 Method 

2.1 Applying CASPER to the data 

Since the data features were fuzzy memberships in the range [0, 1], they were already in a suitable form to directly input 

into CASPER networks. The features were not rescaled to a common variance because the ranges already have a semantic 

meaning – the membership strength in the fuzzy sets. Rescaling in this manner would artificially inflate the importance 



of small differences between values, and encourage CASPER to give too much consideration to them, resulting in a less 

robust model. 

In the defuzzified data, the ranges were already rescaled to [0, 1], so no further rescaling was necessary. 

2.1 Linear separation of the data 

The original dataset paper [4] was able to correctly classify all points in the data using hierarchical fuzzy signatures. Since 

the dataset was, by observation, linearly separable, it was expected that CASPER should be able to reproduce this correct 

classification without needing hidden neurons at all. 

The preliminary aim of the paper was to reproduce the classification result obtained on the dataset in [4] with fuzzy 

signatures. [4] was able to correctly classify all points. 

For this task, the CASPER algorithm was tested with a length of zero, meaning that no hidden neurons were present, and 

all other hyperparameters as per table 2. This was repeated for both the fuzzy and defuzzified representations of the 

features. Up to 15 iterations were tested. The hyperparameters were set as per table 2. Where they are listed as varied, the 

value from the CASPER paper was used. 

2.2 Data modifications to ensure robust fitting 

Since the data in the SARS dataset were already very well separated, an infinite number of linear classification boundaries 

were possible, and many of them could completely ignore some of the features. On this dataset, all such classifiers would 

be equally effective, however some would clearly produce better results than others in practise. 

In reality, there are many more than four classes of medical conditions to consider, and patients may present with more 

complex combinations of medical conditions. Additionally, some measurements may be taken inaccurately. I therefore 

define a good model to be one that has a good chance of effectively generalising to real-world measurements that were 

not specifically generated for a classification problem. 

Since additional medical datasets were unavailable for this task, I aimed to make the model as robust as possible with 

only this dataset, and to develop a method that could generate more robust predictions when trained on other datasets in 

the process. A robust classifier should: use all relevant information to make a prediction rather than just a small number 

of features; produce classification boundaries that are far from the means of the features in each sample; and continue to 

produce sensible results if noisy or inaccurate measurements are taken. 

In order to achieve robust classification, a large degree of noise was added to the dataset, thus forcing any classifier trained 

on the dataset to be robust in order to achieve a good result. One significant problem with this approach is that adding 

noise removes information about the data. For example, a point on the extreme edge of a feature for a certain condition 

may be randomly moved back towards the centre of a cluster by the added noise to it. In order to reduce this issue and 

further reduce overfitting, three copies of the data were made, and independently sampled noise was added to each copy. 

In order to avoid leaking information about the test data into the training set, the data were split into the sets prior to the 

repetition and noise-adding operations. The variance of 0.6 was chosen so that no configuration would produce an MSE 

close to zero, thus ensuring that the MSE gradient would not vanish and that there would be a suitable error function for 

selecting the best model and parameters. 

The procedure for this was as follows: 

 Split the data into training and test sets 

 For each set: 

o Repeat each record three times 

o Add an independently-drawn value from a Gaussian distribution with a mean of 0 and a variance of 0.6 

to each point 

 Proceed with training as normal on the new dataset. 

This testing was done only with the fuzzy data, since the data was fuzzy. 

2.3 CASPER Algorithm and hyperparameters 

This dataset was classified using the CASPER algorithm [1], a form of neural network where neurons are sequentially 

added and trained as necessary in order to predict the provided target labels with sufficient accuracy [1]. These properties 

make it an attractive choice of algorithm for predicting the features. 

Cascade correlation algorithms, including CASPER, are neural network algorithms which begin with just an input layer 

and an output layer, and no hidden neurons. After initial training, they grow and improve the network by adding and 



training new hidden neurons sequentially. Algorithms in this family differ by how they add and train the neurons, and 

this can make a large difference to the quality of the results. [2] 

 

Figure 3: structure of CASPER with learning rates. Based on a diagram in [1]. 

CASPER is one of the most successful algorithms in this family [2], and it is distinguished by training the whole network 

simultaneously using variable learning rates and the RPROP algorithm [1]. The motivation for CASPER was to retain the 

beneficial results from CasCor, whilst avoiding the problems of overfitting associated with freezing training of all of the 

other neurons [1]. This is accomplished by setting different learning rates for different weights within the network. All 

weights of the new neuron’s inputs (except the bias) are at the highest rate L1, the weights between the new neuron and 

the output neuron are at an intermediate rate L2, and all other weights are at the lowest rate L3 [1]. In the original CASPER 

paper [1], these are 0.2, 0.005, and 0.001 respectively. 

For optimisation, CASPER uses a modified version of RPROP [1]. RPROP is a replacement for gradient descent where 

the step size is not proportional to the gradient [5]. Rather, on each feature, the algorithm steps in the opposite direction 

to the gradient with a step size Δ. When the gradient stays the same for two consecutive steps, Δ is increased according 

to Δ𝑡+1 = Δ𝑡 × 𝜂+, and when the gradient changes signs, no step is taken and delta is decreased according to Δ𝑡+1 = Δ𝑡 ×

𝜂−. Additionally, bounds are placed on Δ for numerical stability. [5] 

The three learning rates L1, L2, and L3 in CASPER are the initial values for Δ for the relevant connections, thus 

functioning as initial learning rates. Since RPROP steps can grow exponentially, the learning rates of the L2 and L3 

connections can eventually reach or exceed the L1 learning rate, to the function of the different weights is to force the 

new neuron to be trained before other neurons can be significantly changed. [1] 

As a cascade correlation algorithm, CasPer is very sensitive to the choice of hyperparameters [2], thus optimising them 

for the specific problem is imperative, and a significant focus of this paper. 

Although CASPER’s dynamic cascade architecture allows it to grow as needed to fit the problem at hand, it requires 

many hyperparameters to be appropriately tuned, some of which are highly problem-specific [1]. Furthermore, some of 

the general parameters may be better tuned for the specific problem. As a result, much of the focus of this paper is tuning 

CASPER’s hyperparameters. 

Table 2: CASPER’s suggested [1] hyperparameters, and the hyperparameters used in this paper. 

 Name/s Value Value in CASPER 

paper [1] 

Meaning 

General neural 

network 

parameters 

𝑁ℎ𝑖𝑑𝑑𝑒𝑛, 

length 

Varied None suggested / 

problem-specific 

Number of hidden neurons / length of hidden neuron 

chain 

Activation 

function 

Sigmoid 

(0,1) 

Problem-specific The function used to make neuron outputs non-linear 

and constrain their range 

Addition to 

derivative 

0.0001 0.0001 A small constant added to the sigmoid’s derivative to 

prevent neurons getting ‘stuck’ 

𝜎𝑖𝑛𝑖𝑡, 

noise_std 

0.002 N/A Variance of Gaussian random noise added to new 

connection weights. 

Stop conditions Minimum 
required 
decrease 

Not used 1% Amount that the MSE must fall per epoch for training 

to continue. 

𝑁𝑖𝑡𝑒𝑟  Varied Not used Amount of iterations after which to finish training 

each neuron. 



CASPER-

specific 

learning rates 

L1 Varied 0.2 Initial learning rate for the new neuron (and the 

output layer before hidden neurons are added) 

L2 Varied 0.005 Initial learning rate for the output neurons’ weight for 

the new neuron 

L3 Varied 0.001 Initial learning rate for the new neuron’s bias, and for 

all other neurons’ weights. 

Normalisation k Varied Problem-specific Normalisation constant used to regularise the weights 

Additional 

RPROP 

parameters 

𝜂−  0.5 0.5 How much to multiplicatively reduce delta (step size) 

when the gradient changes sign 

𝜂+  1.2 1.2 How much to multiplicatively increase delta when 

the gradient’s sign remains constant and nonzero 

Δ𝑚𝑖𝑛   1e-6 1e-6 Minimum allowed value for delta 

Δ𝑚𝑎𝑥   50 50 Maximum allowed value for delta 

 

2.4 Genetic algorithm and hyperparameters 

For this task, we aim to use an algorithm to optimise the hyperparameters of CASPER. 

Nature of this problem 

The CASPER hyperparameter optimisation problem is a difficult one. First, CASPER has a degree of randomness when 

initialising the weights for new connections, thus the final weights and output of the network are stochastic, even for fixed 

input data. There is no convenient method of computing the gradient of the output, except empirically through multiple 

trials over a small region of the search space. 

Furthemore, CASPER itself uses RPROP (a form of gradient-based descent) so the network will generally produce 

weights at (or very close to) a local minimum of error. Over multiple trials, the network may fall into multiple different 

minima, with the probability remaining unchanged between trials. This creates the issue that, if it falls into the same 

minimum several times, the variance of the output error will falsely appear to be zero. The existence of other possible 

minima cannot be determined until a trial eventually causes one to occur. This makes optimisation difficult since the error 

from CASPER (which is what we want to minimise with an algorithm) is essentially a random variable with a highly 

irregular multimodal distribution. 

Finally, since each evaluation of the error requires an entire network to be trained, the number of times it can be evaluated 

is limited by computational resources. Since this is a difficult search space, we consider evolutionary algorithms. 

Background 

Evolutionary algorithms are a class of algorithm inspired by Darwinian evolution in biology; and they share many features 

with Darwinian evolution at a conceptual level. In such algorithms, candidate solutions generally represent individuals, 

these solutions have some form of mutation (random change) and breeding (generating an individual with some 

combination of the characteristics of the two ‘parent’ individuals). Additionally, some measure of fitness is used, and the 

least fit individuals are generally discarded to make room for new individuals [7]. 

In general, evolutionary algorithms are best used for optimisation on difficult search spaces, for example when neither a 

gradient nor a heuristic are available [7]. For this reason, it was decided that an evolutionary algorithm should be used to 

optimise the CASPER parameters. 

Genetic algorithms are one of the most commonly used types of evolutionary algorithm, and are suited to optimising 

numerical parameters over a fixed range of values [7], so it was decided that a genetic algorithm should be used for this 

problem. The algorithm used was custom-designed for the tasks based on the general steps of genetic algorithms. 

Initialisation 

When determining the parameter ranges, all values within the ranges were considered valid possibilities. As a result, 

values are initialised using a uniform or log-uniform distribution, as specified in table 3. 

Mutation 

Two types of mutation are used in this algorithm: small and large. In a large mutation, the mutated value is discarded and 

re-drawn from the range using the same distribution used for initialisation. In a small mutation, the value is redrawn from 

a small fraction of the possible range. For log-space variables, this range is also taken in log-space. 

The purpose of large mutations is to ensure that the full search space is thoroughly explored, even if a large percentage 

of the population remains close to a single local optimum; however large mutations were found to commonly produce 

extremely unfit individuals, which were immediately discarded. The probability of this mutation type was thus set to a 

relatively small values. The purpose of small mutations is to encourage local search and solve the problem of the entire 

population remaining ‘stuck’ at a near-optimal value of one variable. Since this much more likely to produce fit 



individuals than the large-scale mutation, it was given a higher probability of occurring in all rounds. Favouring large 

mutations favours exploration, and favouring small mutations favours exploitation. 

Culling and breeding 

The culling and breeding method used in this algorithm is designed to focus mostly on the best individuals, but allow 

some degree of randomness to allow suboptimal regions of the search space to be traversed so that new local optima can 

be found. After each generation, the top 10% of individuals are allowed to survive to the next generation, and the 

remaining 90% are created by breeding. Keeping more than one individual was considered important due to the stochastic 

nature of fitness, since the fittest individual in one generation may rank lower in a subsequent generation. Additionally, 

keeping multiple good individuals will likely improve the quality of the offspring. 

Breeding takes place by combining the genetics of randomly chosen pairs of eligible individuals, under the condition that 

no individual may breed with itself. Individuals are guaranteed to be eligible for breeding if they are above the 60 th 

percentile of fitness. The remaining individuals have a 20% chance of being eligible for breeding. This aims to make most 

of the individuals relatively fit, but also allow a small number of very unique individuals to exist to maintain diversity. 

CASPER hyperparameters 

The CASPER hyperparameters considered for optimisation were: 𝑁ℎ𝑖𝑑𝑑𝑒𝑛, 𝑁𝑖𝑡𝑒𝑟, k, L1, L2, and L3. The parameters inherited 

from RPROP were not optimised as this would likely make the search space too complex and lead to too many interdependencies 

between the variables. For example, increasing 𝜂+ would decrease the delay before training the L2- and L3- weighted connections, 

thereby requiring L2- and L3 to decrease in comparison to L1 to compensate. 

For many of the parameters, the desired range of values to explore spanned many orders of magnitude, and it was not obvious which 

order of magnitude would be most likely to contain the optimal solution. This would make a uniformly distributed search highly 

suboptimal, since it would spend nine tenths of its time in the highest order of magnitude, and only one tenth in the next order down, 

so the lowest orders of magnitude would almost never be explored. Instead, a log-uniform distribution was used in these cases, which 

was calculated using the formula 

𝑣𝑟𝑎𝑛𝑑~10U(log10(𝑣𝑚𝑖𝑛),log10(𝑣𝑚𝑎𝑥 )) 

Where U is the uniform distribution. This ensured that all relevant orders of magnitude would be given approximately equal 

consideration. 

Table 3: CASPER hyperparameters optimised with the genetic algorithm and the ranges considered. 

Parameter Range Space Justification 

𝑁ℎ𝑖𝑑𝑑𝑒𝑛  [0,5]  Linear An upper limit was set at length 5, since this is more than the number of neurons 

preliminary testing showed was necessary to achieve good results. It is linear since all 

lengths should be given equal consideration. 

𝑁𝑖𝑡𝑒𝑟  [10,100]  Log Due to the simplicity of the problem and preliminary testing, it was determined that 

no more than 100 iterations per neuron should be needed. This was confirmed since 

the optimal number of iterations was found to be significantly fewer than 100. 

𝑘  [10−6, 1]  Log The optimal value was not clear from the CASPER paper [1], so a large-range was 

used, and a log search was used because even the best order of magnitude was unclear. 

𝐿1  [10−4, 2]  Log Since RPROP can exponentially grow or shrink the step size, these values act as 

learning delays more than learning rates. As a result, a large range of values should be 

considered, and log-space is used because the delay is logarithmic with respect to the 

difference of these values. 

𝐿2  [10−4, 10−1]  Log 

𝐿3  [10−4, 10−1]  Log 

 

Combining genetics 

With the exception of L1, L2, and L3, the CASPER hyperparameters do not have any natural ordering relative to their 

function so, for consistency, it was decided that each of them should be handled independently. In contrast, order-

dependent combination strategies such as one- or two-point crossover would artificially impose relationships between 

some of the variables by those nearby in the ordering to be more likely chosen together. 

In order to make the combination order-independent, the genomes were represented as a sequence of separate numeric 

variables rather than a single binary string, and child genomes were generated by choosing each variable randomly from 

one of the parents with equal probability. 

Triple-round execution 

Due to the stochastic nature of the fitness function, a trade-off must be made between the accuracy of the evaluation of 

the fitness function (number of iterations) and the amount of times fitness is evaluated by the evolutionary algorithm. 

Since the quality of individuals improves over generations, a three-step process is used. Additionally, the hyperparameters 

define a choice between exploration and exploitation. To balance these factors, a three-round approach was used. 



Round 1 focuses more on exploration. It uses a large number of individuals, large mutations, and a large number of 

iterations. The aim of this round was to eliminate most of the suboptimal regions and to have individuals in most of the 

optimal regions. Round 2 is more balanced, using more accurate fitness evaluation and moderate mutations. Round 3 

focuses on exploitation and evaluation. It uses very accurate evaluation and small mutations. 

The values of the hyperparameters used in each round are shown in table 4. The varied CASPER hyperparameters and 

the ranges considered are shown in table 3, and the fixed CASPER hyperparameters are shown in table 2. Ideally, more 

genomes and generations would have been used, but there were insufficient computational resources. 

Table 4: hyperparameters for the evolutionary algorithm 

Parameter Value Meaning 

 Round 1 Round 2 Round 3  

𝑁𝑔𝑒𝑛𝑜𝑚𝑒𝑠  20 10 10 Number of individuals present in each generation 

Keep_frac 10% 10% 10% Top *% of individuals survive to the next generation 

Breed_frac 40% 40% 40% Top *% of individuals enter the breeding pool 

Unfit_breed_prob 20% 20% 20% *% of remaining individuals also enter the breeding pool 

Mutate_prob 10% 3% 0% Chance of a large mutation occurring 

Mutate_nudge_prob 20% 20% 20% Chance of a small mutation occurring 

Mutate_range 10% 3% 1% Fraction of the range that a small mutation can shift values 
by. 

Sample_count 1 4 16 Number of times to call the fitness function to determine 
fitness. 

𝑁𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  30 15 2 Number of generations to use in each round 

 

3 Results and discussion 

3.1 Classification 

The data were found to be linearly separable, and the network was able to successfully classify all points in both the 

training and test sets with no hidden neurons. This typically required only a few iterations to produce a correct 

classification, but the MSE continued to decrease in subsequent iterations until it was almost exactly zero. The MSE 

convergence was almost twice as fast in terms of iterations on the original fuzzy dataset as it was on the defuzzified 

dataset. 

 

Figure 4: mean squared error plot for the SARS dataset with the original fuzzy labels (left) and the defuzzified labels (right). 

The difference in the MSE decay rates can likely be attributed to the presentation of the data. In the defuzzified 

representation, there are fewer features and the differences between the features are often compressed, so CASPER would 

require several iterations to increase the step size Δ. Additionally, the fuzzy data provides immediate access to a feature 

representing whether a value is near the middle of its range for most cases, and this would take multiple hidden neurons 

to reproduce in the defuzzified data; however this feature is not necessary for the classification. 

The authors of the SARS dataset [3] were also able to achieve perfect classification on the dataset, however the methods 

are not directly comparable. 

 



3.2 Performance of the evolutionary algorithm 

 

 
Figure 4: results after round 1 for the six variables: 𝑁ℎ𝑖𝑑𝑑𝑒𝑛, 𝑁𝑖𝑡𝑒𝑟, k, L1, L2, and L3. 

 
Figure 5: results after round 2 for the six variables: 𝑁ℎ𝑖𝑑𝑑𝑒𝑛, 𝑁𝑖𝑡𝑒𝑟, k, L1, L2, and L3. 

 
 

 
Figure 6: results after round 3 for the six variables: 𝑁ℎ𝑖𝑑𝑑𝑒𝑛, 𝑁𝑖𝑡𝑒𝑟, k, L1, L2, and L3. 



The individuals produced by the evolutionary algorithm at the end of each of the three rounds are shown in figures 4-6. 

Throughout the first round, the population is highly diverse, with the diversity decreasing over the generations as more 

of the individuals appear to enter local minima. During the second round, the diversity in several of the variables reduces 

to near a single value, and others approach a bimodal distribution; and this pattern continues through the third round. By 

the end of the third round, k and L1 have clearly bimodal distributions. 

In general, this is how the algorithm was intended to perform, however the lack of small-scale diversity towards the end 

of the third generation makes it unclear whether the values are truly optimal. This could either be explained by the small-

scale mutations being too large and to impossible, or by the first round already having produced near-optimal solutions. 

Finally, the stochastic nature of the fitness function and the lack of computational resources for more evaluations of it 

made it difficult to draw robust conclusions about the optimality of the final results, especially given how small the 

differences between some of the values. 

3.3 Identified parameters for CASPER 

Table 5: CASPER hyperparameters representing the top 10 genomes after all three rounds were finished. 

Rank 𝑵𝒉𝒊𝒅𝒅𝒆𝒏  𝑵𝒊𝒕𝒆𝒓  𝒌  𝑳𝟏  𝑳𝟐  𝑳𝟑  

1 5 25 1.5081 × 10−4 8.6971 × 10−2 2.3024 × 10−2 5.2906 × 10−4 

2 5 25 1.5081 × 10−4 6.3869 × 10−4 2.3024 × 10−2 5.2906 × 10−4 

3 5 25 1.4383 × 10−4 8.6971 × 10−2 2.3024 × 10−2 5.2906 × 10−4 

4 5 25 1.5081 × 10−4 8.6971 × 10−2 2.3024 × 10−2 5.2906 × 10−4 

5 5 25 1.5081 × 10−4 6.3869 × 10−4 2.3024 × 10−2 5.2906 × 10−4 

6 5 25 1.5081 × 10−4 8.6971 × 10−2 2.3024 × 10−2 5.2906 × 10−4 

7 5 25 1.4383 × 10−4 8.6971 × 10−2 2.3024 × 10−2 1.1141 × 10−4 

8 5 25 1.4383 × 10−4 8.6971 × 10−2 2.3024 × 10−2 5.2906 × 10−4 

9 5 25 1.5081 × 10−4 8.6971 × 10−2 2.3024 × 10−2 5.2906 × 10−4 

10 5 25 1.4383 × 10−4 8.6971 × 10−2 2.3024 × 10−2 5.2906 × 10−4 

 

3.4 Reliability of results 

Due to the highly stochastic nature of the fitness function, the reliability of the predicted hyperparameters is questionable. 

As can be seen in figure 6, the variation in fitness in the final round is extremely small, and the genomes ranked 1st, 4th, 

6th, and 9th are all identical. This suggests that the final round was primarily choosing individuals based on the noise in 

the fitness function. 

The reliability is further called into question because some of the remaining genomes have substantially different 

parameters. For example the 2nd and 5th placing genomes have an L1 approximately 1/100 of that of the others, and 7th has 

an L3 approximately 1/5 of the others. This is not consistent with the expected optimal values, because CASPER’s authors 

[1] clearly intended for L1 to be substantially larger than the other two learning rates, not more than an order of magnitude 

smaller than L2. It should be noted, however, that these learning rates are initial step sizes for RPROP, which 

exponentially grows or shrinks them based on the sign of the gradient [5], thus smaller values effectively function as 

learning delays. 

This discrepancy in the learning rates can be explained by the simplicity of this classification task. Since the different 

classes are easily separable before adding noise, and the dataset is very large for the number of features available, it is 

likely that there is a simple classification boundary and a clear gradient towards it. If so, the choice of learning rates would 

be relatively unimportant as CASPER would likely produce a similar solution anyway, which suggests that the identified 

learning rates are neither meaningful nor generalisable. 

The alternative possibility is that the bimodal values of L1 are meaningful and represent a useful configuration of 

CASPER, where the weights of the new neuron are updated after its bias and the new weights to the output neurons. This 

is unlikely since is conceptually very different to regular CASPER, however it is worth investigating as it may provide 

new insights about the algorithm. 

3.5 Validation 

The network with the optimal parameters produced an MSE of about 0.036 on the noisy data, which is very low 

considering how much noise was added to the data. This suggests that robust classification was achieved. In order to 

verify this, however, two separate tests were conducted.  

First, the CASPER hyperparameters from the optimal genome were used for a CASPER network trained and tested on 

the original data. This classified all test data correctly and had a very small MSE (typically less than 10−10), which shows 

that the hyperparameters are valid and generalise to at least a limited extent beyond the noisy data. 



Second, a CASPER network trained on the noisy data with these hyperparameters and tested on the original data. This 

also correctly classified all of the test data, but had a larger MSE of around 0.007. The larger MSE can be explained by 

the fact that it was trained on extremely noisy data, and therefore will usually make weaker predictions. 

Although it is expected that the network trained on the noisy data would generalise better to an extended dataset including 

other types of medical conditions, this cannot be tested without such a dataset available. 

4 Conclusion and future work 

4.1 Conclusion 

This paper aimed to optimise a CASPER network to robustly classify the patients in the SARS dataset into their medical 

diagnoses based on their measurements and observations. Due to the simplicity of the dataset, a trivial CASPER network 

was able to classify it with perfect accuracy, however the simplicity of the dataset meant that such a classifier may not 

generalise well to noisier, more realistic measurements. 

A more robust classifier was developed by adding a substantial amount of noise (Gaussian, standard deviation 0.6) to the 

data, then using CASPER in combination with an evolutionary algorithm for hyperparameter optimisation to fit it. This 

robust classifier was successful, as it was able to fit the noisy test data reasonably well (MSE ~ 0.036) and still provide 

perfect classification on non-noisy test data. 

The evolutionary algorithm appeared to be reasonably effective, however it was difficult to be certain due to the stochastic 

nature of the optimisation task, and the limited computational resources available to execute it. The CASPER 

hyperparameters resulting from the algorithm were questionable, with the second-place genome containing an extremely 

small L1 value similar to L3 and much less than L2. This was determined to be most likely either due to lack of accuracy 

of the fitness function in the evolutionary algorithm or due to the simplicity of the dataset meaning that almost any choice 

of learning rate is capable of producing good results. If this value is not an aberration, however, it could be a novel and 

useful configuration of CASPER. 

4.2 Future work 

First, the classifier produced in this paper was very accurate and robust on the dataset, however the dataset itself was very 

easy to classify. The Gaussian noise / CASPER / evolutionary optimisation methodology used to produce the robust 

classification should also be applicable to other datasets, however it is unclear how effective it will be when the original 

data are more difficult so separate, such as when multiple medical conditions present with similar measured symptoms. 

As a result, future work is recommended in exploring the applicability of these methods to an extended dataset containing 

more medical conditions. This work would most likely need to make adjustments for unbalanced classes, for example, 

taking more repetitions of the data in the smaller classes (before adding Gaussian noise). 

Second, the evolutionary process appeared to be capable of producing noteworthy results about CASPER’s 

hyperparameters, however it is unclear how well these results would generalise to other datasets and whether the SARS 

dataset required any features complex enough to warrant such optimisation. To produce more useful result and test the 

unlikely hypothesis that 𝐿1~𝐿3 ≪ 𝐿2 is a useful configuration for CASPER, the same method could be applied using a 

many different datasets from unrelated classification tasks, with the fitness function modified to determine the mean error 

across all of them. Then, the hyperparameters identified by the evolutionary algorithm would be likely to generalise well 

to other tasks. Validation could be conducted by testing the hyperparameters on a new classification dataset not used 

during training.  
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