
Improved CasPer algorithm:

CasPer with Tower-Cascade Architecture

 Fangxu Zhao,

Research School of Computer Science

Australian National University, Canberra, Australia

u6822201@anu.edu.au

Abstract. Constructive neural networks with cascade architechture are powerful feedforward neural networks.

However, there still some problems facing in current state of art. This paper aims to explore the improvement of

applying Tower Architecture for depth limiting to CasPer algorithm. In this method, series of cascade towers with same

maximum size are built in training process, which control the maximum depth of network and maintain the advantages

brings by constructive cascade architecture. The experiments show that applying Tower-Cascade architecture have an

obvious improvement on the model performance of Loss and Accuracy.

Keywords: CasPer algorithm, image-manipulation, eye gaze.

1 Introduction

CasPer algorithm builds Constructive Cascade Neural Network, which is a feedforward neural network in which the

network architecture is built during the learning process, similar to Cascade Correlation (CasCor) [2]. Building the

neural network during the learning process allows it to obtain a good match between network complexity and the

complexity of the problem to solve [1].

CasPer inserts the hidden neurons one at a time, the new hidden neuron takes previous hidden neurons’ outputs as part

of its input, which allows the new hidden neuron to learn the remaining network error, so that less hidden neurons will

be needed than original neural network.

Fig. 1. Cascading topology of Cascade Architecture

As you can see, the input size of the new hidden neuron keeps increasing with the construction of the network, which

leads to the exponential increasing of the total weights of the network.

To avoid this, the limitation of the network depth is introduced. The maximum depth limit is set before the construction

of the network, when the limit is reached, the next hidden neuron begins a new cascade [7]. In this case, the total weights

of the network will increase linearly, which ensures that the complexity of the network will not exceed the complexity of

the problem, keep the structure simple and efficient.

Meanwhile, the goal of this research is that the reduction of complexity should not hurt the performance, and have better

training performance.

Fig. 2 A cascade tower architecture with a tower size of 3 [7]

The improvement in structure is multifaceted, such as faster convergence during training, better prediction accuracy at

the end of training, and so on. A detailed comparison and analysis will be presented in the following sections. The study

of the improvements brought by structural improvements can assess the effectiveness of the efforts made in this direction

and explore possible directions for future improvements.

2 Dataset and Method Implementation

2.1 Dataset Inspection and Preprocessing

The dataset I use is that contained in the paper presented by Sabrina Caldwell, Tamás Gedeon, Richard Jones, Leana

Copeland [4]. Which contains the participants' use of eye gaze, whether the observed image has been manipulated and

their judgement as to whether the image has been manipulated.

The objectives of this dataset were based on how we use our eye gaze when looking at an image to find out whether it is

possible to determine whether the image is manipulated; secondly, to find out whether it is possible to determine what

the participants vote (their judgment on the image that they are looking at. Manipulated, Unmanipulated, or Do not know).

Table 1. The data that dataset contains.

Headings of data Type Meanings

participant Integer Id number of the participants (integer between 1 and 80)

num_fixs Integer Total number of fixations by the participant when looking at the image

fixs_duration Float Total amount of time (in seconds) that the participant spent looking at the image

num_man_fixs Integer Total number of fixations by the participant when looking within the target area

man_fixs_dur Float Total amount of time (in seconds) that the participant spent looking within the

target area

image Integer The image id (integer in [10, 11, 12, 13,14, 15])

image_manipulated Integer Whether the image the participant views is the manipulated or unmanipulated

version (0 = unmanipulated, 1 = manipulated)

votes Integer The verbal opinion of the participant as to whether the image is manipulated or

unmanipulated (0 = voted unmanipulated, 1 = voted manipulated, 2 = don't know)

Fig. 3 mean value of each feature.

Among all these data, the “image id” and the “participants” are redundant features. After dropping these columns, the

total number of features for training is 4, with the last two features as labels for prediction, which is not much for training.

So feature extraction or feature selection will not be considered in this case.

The dataset contains 5 images, with its manipulated version. Which presented as follow:

Fig. 4. Images provided (in order 10, 11, 12, 13, 14).

In terms of the objectives of the dataset, we do not need to consider the images and the participants themselves, but only

the way in which the participants used their gaze, in relation to both whether the images were processed and their votes.

2.2 Model building for improved CasPer algorithms

Constructive algorithms such as CasPer and Cascade Correlation (CasCor) start with the minimal size NN architecture

often with no hidden neurons as in Fig. 1. Initially, all input neurons are fully connected to the output neurons. The
number of connections in the initial network would be very large if there are too many hidden neurons added [3].

In building the model, I prefer to call and insert hidden neurons in an object-oriented way, which makes the whole process

of building and training the model more intuitive. Based on this, I created a class called Hidden Neuron, which contains

the output value and the weight it carries, defines as follow:
class hidden_neuron(object):

 def __init(self, in_dim):

 self.weight = torch.randn(in_dim, 1, device='cpu', dtype=torch.float,

requires_grad=True)

 self.out_val = 0

 def calculate_output(self, input_data):

 self.out_val = torch.tanh(torch.mm(input_data, self.weight))

 return self.out_val

The whole process of building the network during training can be presented like this:
1. Add new hidden neuron to the current tower

2. Training the network by RPROP, records the loss and accuracy during training

3. Check the size of the current tower, if reaches the upper bound, start a new

empty tower

3. Check training loss to decide whether keep adding hidden neurons

4. If True, back to step 1, stop completely otherwise.

The out layers are needed for matching dimension the outputs with the out dimensions required. The out layers is added

one dimension a time, the newly added dimensions are recorded inside the tower, and will be recorded in the network

class after the size reaches the maximum limit.

In this process there two things which need to be mentioned: the first is when to stop training the network after new

hidden neurons have been added, and the second is how to decide whether to add new hidden neurons after training is

complete. The first part will be discussed in detail in 2.3, so we will focus on the second part here.

We can easily know by the structure of the network that the key of avoiding overfitting and get good performance is the

strategy of deciding when to stop adding hidden neurons. The strategy that I used is comparing the precious loss with

the loss with hidden neuron added. Since if the loss stops decreasing or decrease very less during the training of

RPROP, than it means the network training meets its limit, overfitting will take place if keep training from now.

The definition of stop strategy here is as follow:

𝑺𝒕𝒐𝒑 = ((𝑳𝒐𝒔𝒔𝒊−𝟏 > 𝑳𝒐𝒔𝒔𝒊)𝒂𝒏𝒅 (𝑳𝒐𝒔𝒔𝒊−𝟏 − 𝑳𝒐𝒔𝒔𝒊 < 𝟎. 𝟎𝟎𝟏 ∗ 𝑳𝒐𝒔𝒔𝒊−𝟏)) 𝒐𝒓 (𝑳𝒐𝒔𝒔𝒊 == 𝟎) (1)

(𝑡ℎ𝑒 𝑖 ℎ𝑒𝑟𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠)

For the training process, I used the same training process as CasPer algorithm: RPROP to train the whole network, I

used torch.optim.Rprop as the optimiser to train the whole network automatically.

2.3 Training Methodology

I use the same training strategy as CasPer, and CasPer uses RPROP to train the whole network. In new neuron addition,

initial RPROP learning rates set by weight location.

There are 3 regions in network, each with own initial learning rate (Fig. 2). The reason for setting initial learning rate like

this (L1 >> L2 > L3, in Fig. 2) is that with extreme larger initial learning rate(L1) could make the new hidden neuron

learn the remaining network error fast, and L2 > L3 can make the network to reduce the error without too much

interference from older weights.

Fig. 5 Initial learning rate by weight location when new neuron added (L1 >> L2 > L3).

In my implementation after introducing Tower-Cascade structure, the only difference is that I initial the learning rate of

the weights of hidden neurons in current tower to be L1, the weights of the corresponding output layer of hidden

neurons in current tower to be L2, all the other weights to be L3.

𝐿1 = [𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖𝑛 𝑇𝑜𝑤𝑒𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡]
𝐿2 = [𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠]

𝐿3 = [𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑠]

The weight update of RPROP is as follows:

𝑾𝒊𝒋 =

{

 −∆𝒊𝒋

(𝒕), 𝒊𝒇
𝝏𝑬(𝒕)

𝝏𝑾𝒊𝒋
> 𝟎

+∆𝒊𝒋
(𝒕), 𝒊𝒇

𝝏𝑬(𝒕)

𝝏𝑾𝒊𝒋
< 𝟎

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (2)

the ∆𝑖𝑗 here is the step size, which has the update rule as follows:

∆𝒊𝒋
𝒕 =

{

 𝜼

+ ∙ ∆𝒊𝒋
𝒕−𝟏, 𝒊𝒇

𝝏𝑬(𝒕−𝟏)

𝝏𝑾𝒊𝒋
∙
𝝏𝑬(𝒕)

𝝏𝑾𝒊𝒋
> 𝟎

𝜼− ∙ ∆𝒊𝒋
𝒕−𝟏, 𝒊𝒇

𝝏𝑬(𝒕−𝟏)

𝝏𝑾𝒊𝒋
∙
𝝏𝑬(𝒕)

𝝏𝑾𝒊𝒋
> 𝟎

∆𝒊𝒋
𝒕−𝟏, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (3)

here initial step sized of 0.1, 𝜂+ = 1.2, 𝜂− = 0.5, ∆𝑚𝑎𝑥= 50, ∆𝑚𝑖𝑛= 10
−6. And CasPer uses weight decay to improve

generalization, so error gradient used in Casper is:

𝝏𝑬𝒕

𝝏𝑾𝒊𝒋
=

𝝏𝑬𝒕−𝟏

𝝏𝑾𝒊𝒋
− 𝑫 ∙ 𝒔𝒊𝒈𝒏(𝑾𝒊𝒋) ∙ 𝒘𝒊𝒋

𝟐 ∙ 𝟐−𝑻∙𝑯𝒆𝒑𝒐𝒄𝒉 (4)

𝐻𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ𝑠 𝑠𝑖𝑛𝑐𝑒 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑠𝑡 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛, 𝐷 = 𝑑𝑒𝑐𝑎𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟.

And, for the stopping strategy of training, I used training loss recorded along the training process and the number of

epochs to define convergence. If the loss did not decease more than 1% in the specific number of epochs, then the

training process will be considered as convergence. The limit of epoch can be represented as follow:

𝑳𝒊𝒎𝒊𝒕𝒆𝒑𝒐𝒄𝒉 = 𝑷 ∗ 𝐍𝐮𝐦𝐡𝐢𝐝𝐝𝐞𝐧 + 𝟏𝟓 (5)

𝑃 𝑖𝑠 𝑎𝑛 ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑠𝑒𝑡𝑡𝑒𝑑 𝑡𝑜 1𝑒10 𝑖𝑛 𝑚𝑦 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑺𝒕𝒐𝒑 = (𝑳𝒐𝒔𝒔𝒊 < 𝑳𝒐𝒔𝒔𝒊−𝟏) 𝒂𝒏𝒅 (𝑳𝒐𝒔𝒔𝒊−𝟏 − 𝑳𝒐𝒔𝒔𝒊 < 𝑳𝒐𝒔𝒔𝒊−𝟏 ∗ 𝟎. 𝟎𝟎𝟏) 𝒘𝒉𝒊𝒍𝒆 𝒊 < 𝒍𝒊𝒎𝒊𝒕𝒆𝒑𝒐𝒄𝒉 (6)

𝑖 ℎ𝑒𝑟𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠

By define the stopping strategy like this, the network can have best convergence properties, thus making the structure of

the network more concise [5].

In addition, I used Cross Entropy Loss as loss function, and hyperbolic tangent as Activation Function. According to [3],

hyperbolic tangent functions are symmetric functions, which are believed to be able to yield faster convergence than non-

symmetric functions. Since the weight among the labels are not the same, I add the weight of labels as a parameter into

the Cross Entropy Loss function for weighting the different classes differently for imbalanced classes.

2.4 Hyperparameter Tuning

2.4.1 Tuning for P

Since this parameter is used to bound the maximum epoch, what we want is for the model to converge in training, I set P

to 1e10 (1^10) for trying to make the model entering converge condition every time of training.

2.4.2 Tuning for maximum depth limit (max tower size)

We can easily see that the weights the whole network is almost the same if the number of hidden neurons is the same and

larger than the maximum depth limit.

Fig. 6 network weights vs hidden weights [7]

So, no matter which maximum depth limit I choose, it has little effect on the final structure of the whole neural network.

In this case, I chose 6 as my final maximum depth limit.

3 Results and Evaluation

The results of the experiment are as follows:

Fig. 7 result of K-fold testing.

The experimental setup is done by the K-fold algorithm. Specifically, the whole dataset is divided into 5 parts, and the

others are used as the test set and the training set in turn, and the information is collected after the final formation of the

model. It is clear from the graph that the results from the new model are better than those from the old model, both in

terms of loss value and accuracy value.

From this, we can directly deduce that, the model obtained by the CasPer algorithm with the maximum depth limit, has a

better performance in terms of the final predicting accuracy and loss.

Fold id Tower-Cascade:

Number of

hidden neurons

Tower-Cascade:

total epochs

Tower-Cascade:

total weight

(approximate by

Num_hidden*4)

CasPer:

Number of

hidden neurons

CasPer: total

epochs

CasPer: total

weight

(approximate by

Num_hidden^2)

0 77 479 308 20 294 400

1 67 512 268 23 251 529

2 69 506 276 19 294 361

3 70 501 280 15 164 225

4 14 254 56 21 250 441

5 21 250 84 29 422 841

Table 2. result of K-fold testing.

The results shows that the Tower-Cascade structure needs more epochs and more hidden neurons to from up the network.

Since the total weights are mostly the weights of the hidden neurons, the total weights of Tower-Cascade can be

approximate by number of hidden neurons. We can find that although Tower-Cascade uses more hidden neurons, the total

weights of the network are smaller than or close to those of CasPer.

Thus, by adding the maximum depth limit, the complexity of the network can be effectively reduced, which is equivalent

to "reducing the total weight" of the network while achieving the same or even better performance. More importantly,

Tower-Cascade adds more hidden neurons in the approaching epoch, indicating that Tower-Cascade converges earlier in

the training process using RPROP, which means that Tower-Cascade can achieve better results with less training time.

From these results we can see that after using the new structure, not only the complexity of the network is decreasing, but

the training time of network is also shortening, and the performance of the network is increasing. All these three points

show that this structural progress simplifies the network without losing the original advantages of CasPer in

generalization.

In the whole result, the only shortcoming is that Tower-Cascade uses more total epochs and hidden neurons, which means

that although the overall structure of the network is simplified, it still needs a lot of hidden neurons to build the body of

the network, and during this period, although the training epochs of each hidden neuron are not too many. In this period,

although the training epoch of each hidden neuron is not much, but in general, it still needs many training sessions to

make the model achieve the expected effect. This may be a direction for future improvement.

Here is comparison in details of fold 5:

Fig. 8 Comparison of Tower-Cascade with CasPer

The comparison shows that the accuracy of Tower-Cascade has larger loss in the beginning, decrease very fast in the

staring epochs. Which proves that it maintains the advantage of Cascade Correlation. And Tower-Cascade have more

stable increasement on accuracy, which may cause by the simpler and stabler structure of network.

4 Discussion

The improvements of introducing Tower-Cascade architecture are various. In terms of the performance of network, the

higher Accuracy and lower Loss took place on multiple fold of experiments, which proves that it has a better performance.

And more hidden neurons added in same total epochs as Casper, proves that it will converge sooner that Casper while

training.

But there are still problems. One problem is that too many total epochs and hidden neurons. The limitation of this structure

is that average weights of hidden neurons are much lower than Casper, which leads to more hidden neurons to solve the

same problem or achieve same performance. And it is the reason of taking more epochs and more hidden neurons than

Casper.

One possible fix towards this problem is that may be adding some connections among the towers instead of completely

independent. Adding these connections may leads to learning the remaining error of the previous towers, so that adding

new towers may be more affective. As for how to add the connections with adapting the advantages of Casper, that may

be a subject of future work.

References

1. Kwok, T.-Y., Yeung, D.-Y.: Constructive Algorithms for Structure Learning in Feedforward Neural Networks for Regression

Problems. IEEE Trans. on Neural Networks 8, 630--645 (1997)

2. Fahlman, S.E. and Lebiere, C. “The cascade-correlation learning architecture,” Advances in Neural Information Processing, vol.2,

D.S. Touretzky, (Ed.) San Mateo, CA: Morgan Kauffman, 1990, pp. 524--532.

3. Khoo S., Gedeon T. (2009) Generalisation Performance vs. Architecture Variations in Constructive Cascade Networks. In: Köppen

M., Kasabov N., Coghill G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. pp. 236--243. Lecture Notes in

Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_29.

4. Veasey S.C. et al. (2009) O. In: Binder M.D., Hirokawa N., Windhorst U. (eds) Encyclopedia of Neuroscience. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_15

5. Treadgold N.K., Gedeon T.D. (1997) A cascade network algorithm employing Progressive RPROP. In: Mira J., Moreno-Díaz R.,

Cabestany J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in

Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032532

6. Śmieja, F.J. Neural network constructive algorithms: Trading generalization for learning efficiency?. Circuits Systems and Signal

Process 12, 331–374 (1993). https://doi.org/10.1007/BF01189880

7. N. K. Treadgold and T. D. Gedeon, "Exploring architecture variations in constructive cascade networks," 1998 IEEE International

Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227),

1998, pp. 343-348 vol.1, doi: 10.1109/IJCNN.1998.682289.

https://doi.org/10.1007/978-3-642-03040-6_29
https://doi.org/10.1007/BFb0032532
https://doi.org/10.1007/BF01189880

Appendix

Fig. 9. Cascading topology of Cascade Architecture

Fig. 10 A cascade tower architecture with a tower size of 3 [7]

Fig. 11 mean value of each feature.

Fig. 12. Images provided (in order 10, 11, 12, 13, 14).

Fig. 13 Initial learning rate by weight location when new neuron added (L1 >> L2 > L3).

Fig. 14 network weights vs hidden weights [7]

Fig. 15 result of K-fold testing.

Fig. 16 Comparison of Tower-Cascade with CasPer

Table 3. The data that dataset contains.

Headings of data Type Meanings

participant Integer Id number of the participants (integer between 1 and 80)

num_fixs Integer Total number of fixations by the participant when looking at the image

fixs_duration Float Total amount of time (in seconds) that the participant spent looking at the image

num_man_fixs Integer Total number of fixations by the participant when looking within the target area

man_fixs_dur Float Total amount of time (in seconds) that the participant spent looking within the

target area

image Integer The image id (integer in [10, 11, 12, 13,14, 15])

image_manipulated Integer Whether the image the participant views is the manipulated or unmanipulated

version (0 = unmanipulated, 1 = manipulated)

votes Integer The verbal opinion of the participant as to whether the image is manipulated or

unmanipulated (0 = voted unmanipulated, 1 = voted manipulated, 2 = don't know)

Fold id Tower-Cascade:

Number of

hidden neurons

Tower-Cascade:

total epochs

Tower-Cascade:

total weight

(approximate by

Num_hidden*4)

CasPer:

Number of

hidden neurons

CasPer: total

epochs

CasPer: total

weight

(approximate by

Num_hidden^2)

0 77 479 308 20 294 400

1 67 512 268 23 251 529

2 69 506 276 19 294 361

3 70 501 280 15 164 225

4 14 254 56 21 250 441

5 21 250 84 29 422 841

Table 4. result of K-fold testing.

