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Abstract. The construction and adjustment of a neural network is very complicated. Because it involves many 
hyperparameters, such as the structure of the neural network, including the number of hidden layers and hidden 
neurons, as well as the learning rate and so on. Adjusting a neural network would be very time-consuming, but these 
parameters greatly affect the effect of model training. This article aims to propose a method to automatically optimize 
the network topology. We use a binary vector to represent the structure of a neural network and optimize the topology 
of the neural network through genetic algorithm. The experiments on the depression dataset [1] prove that the 
network optimized by the genetic algorithm can not only improve the classification accuracy, but also greatly 
accelerate the convergence speed. Besides, we found the design tactics of GA’s fitness function. 
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1 Introduction 

With increasing social pressure, the prevalence of depression is increasing year by year. Depression is a kind of 
affective disorder [2], and it is a serious chronic health condition. The symptoms are mainly long-lasting depression, 
unable to experience happiness in any activities. In severe cases, it may also cause suicidal attempts [3]. Therefore, an 
effective diagnosis of depression is the key to avoiding tragedies. But most of the existing diagnosis methods are based 
on self-reported questionnaires, that are not objective enough. Hence, it is an objective and efficient way to use neural 
networks to identify and classify different levels of depression. 

The development of neural networks has improved the quality of human life in various aspects, and the research on 
improving the performance of neural networks has never stopped. Nowadays, neural networks have a very wide range 
of applications in all aspects. However, NNs have very complicated configurations including network topologies and 
several hyperparameters, which greatly affect the performance of classification effect based on neural networks. [4] 
Usually, people need to estimate the complexity of the task to estimate the approximate topology of the neural network. 
Then repeated testing and adjusting the network based on the results, which is troublesome and time-consuming. This 
paper aims to overcome this problem by finding a way to automatically optimize the network structure without human 
labor. 

Genetic algorithm (GA) is a meta-heuristic inspired by the process of natural selection and are often viewed as 
function optimizers [5]. This algorithm represents the candidate solution as a vector called chromosome, and 
continuously optimizes the population genes according to the fitness function through biologically inspired operators 
such as mutation, crossover and selection, which is very suitable for solving NP problems.  

In this paper, we conducted experiments on the depression dataset [1]. We trained several multi-class classifiers 
based on the neural networks with four different structures. Two of them were estimated by people according to 
experience, which were regarded as the baselines. The other two were optimized by genetic algorithm with different 
fitness functions. And proved the usability of our method by comparison these results. 

2 Dataset 

In this paper, we used the depression dataset from Xuanying Zhu et al.’s work [1]. This dataset records the 192 
biological signals of 12 testers (with no prior knowledge of depression recognition) during they are watching 16 
depression videos. The biological signals contain Galvanic Skin Response (GSR) with 23 features, Skin Temperature 
(ST) with 23 features, Pupillary Dilation (PD) with 39 features, and all features (ALL) with 85 features. This dataset 
divides the depression level into 4 categories: 0 for no or minimal depression, 1 for mild depression, 2 for moderate 
depression, and 3 for severe depression. 
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3 Methodology 

3.1 Data preprocessing 

Normalization. Different features often have different measurement standards and units, which will affect the results 
of data analysis. In order to eliminate this kind of impacts, the data needs to be normalized to be restricted to the same 
scale. In this paper, we use Z-score normalization: 
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whereμis the mean, andσis the standard deviation of the original data. For the depression dataset, the biological signal 
of each individual has subtle differences, normalization can also weaken these differences between different testers. 

Features Selection. When dealing with data containing a large number of features, features selection becomes very 
necessary. Because these features are likely to contain duplicate information and information irrelevant to classification, 
which will affect classification performance. Also, high-dimensional data is not only not conducive to model 
convergence, but also computationally expensive. Hence, dimensionality reduction cannot be ignored. In this paper, we 
use Genetic Algorithm (GA) to perform features selection. 

We use a binary array whose length is the number of features to represent a chromosome. 1 means the corresponding 
feature is retained while 0 means removed. All the values of the chromosomes of the initial population are 1, which 
means use all features. Through repeated fitness-based selection, crossover and mutation, the chromosomes of each 
individual in the population would be very similar and tend to no longer change. Finally perform feature selection based 
on the chromosome array of the individual with best fitness. 

In this paper, we continue to use the main parameters in Xuanying Zhu et al.’s work [1] as Table 1. In addition, we 
define the fitness function based on Linear Discriminant Analysis (LDA). The core idea of LDA is minimizing the 
within-class scatter and maximizing the between-class scatter. LDA could easily handle the case where the within-class 
frequencies are unequal [6]. 

We calculate the within-class scatter matrix SW and the between-class scatter matrix SB according to the following 
formulas: 
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where C is number of classes, m is the mean of the whole data, Ni is the number of samples of class i and mi is the mean 
of class i. Therefore, the fitness F is defined as: 

𝐹 ൌ  
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Finally, we got 16 GSR features, 7 ST features, 22 PD features, and 45 for ALL of these features. 

Table 1. Implementation settings for GA 

GA Parameter Value 

Chromosome encoding Binary 
Chromosome length Number of features 
Chromosome initialization All 1s 
Population size 100 
Crossover rate 0.8 
Mutation rate 1 / (length of chromosome) 
Crossover type Uniform crossover 
Mutation type Uniform mutation 
Selection type Roulette wheel selection 
Number of generations 1000 
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3.2 Genetic representation of structured Neural Networks 

When applying structure optimization to Neural Networks through Genetic Algorithm, one issue is how to represent 
the structure of a neural network as a chromosome [4]. In this paper, we do not consider cross-layer connections. This 
means that the number of connections should be at most mn in two layers that respectively contain m and n neurons, 
which is fully connected. And our target is to find which connections to be deleted to obtain the network structure with 
the best classification effect. 

To overcome this problem, we consider the connections between any two layers of a neural network as a two-
dimensional matrix, called connection matrix C. Element cij in C represents the connection between neuron i in the 
current layer and neuron j in the next layer. If cij equals 1, connection exists, otherwise, the connection does not exist 
[4]. The relation between the genotype and phenotype are shown in Fig 1. Flatten the connection matrix C could obtain 
a binary vector of length mn, which should be the chromosome. 

Fig. 1. Example of the relation between the genotype and phenotype 

 
 
 

      
 
 
 

 
 
 
 
 
In this paper, we constructed a Neural Network with two hidden layers, the number of hidden layer neurons were 100 

and 50, which means this network should contains 3 genotype connection matrices. They were respectively: 

 C1: a 𝑁 ൈ 100 matrix, represents connections between input neurons and neurons in the first hidden layer.  
 C2: a 100 ൈ 50 matrix, represents connections between neurons in the first and second hidden layer. 
 C3: a 50 ൈ𝑀 matrix, represents connections between neurons in the second hidden layer and output neurons. 

where N is number of input features, M is number of depression levels, which is 4. So the chromosome would be the 
result of flattening and concatenating these matrices. 

3.3 Genetic algorithm 

After encoding the chromosomes, the next step is to initialize the population. In this paper, we set the population size 
to 500 and initialize the population chromosome sequences randomly. After that, this population would undergo 20 
rounds of evolution, including selection, crossover and mutation, and finally form a new population with better 
chromosomes. 

Fitness function. Optimizing the topology of a neural network is an NP problem, which means that it is difficult to 
solve, but its solutions could be evaluated relatively easier. Fitness function is used to measure the quality of genes, that 
is, the solutions. The main purpose of optimizing the network structure is to improve classification testing accuracy and 
reduce testing loss. So we built two fitness functions in accordance with these two ideas. 

In this paper, we used leave-one-participant-out cross-validation to train 12 models for 5 epochs with a learning rate 
of 1e-3. The structure of the network was represented by the chromosome. And calculated the average testing accuracy 
and loss of the models. Then the two fitness functions were defined as: 

𝐹௔௖௖ ൌ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ହ ሺ5ሻ 
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1
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Selection. This step is to imitate natural selection in nature. Individuals with higher fitness have a greater chance of 
surviving. In order to achieve a better selection strategy with less complexity, we used Binary Tournament Selection. 
Each time randomly selecting two individuals from the entire population with equal probability, then choose the 
individual with the higher fitness of the two to enter the offspring population [7]. 

Crossover. This step is to imitate gene recombination and crossover in nature. This is a process that recombine and 
distribute genes from two parental chromosomes and form progeny chromosomes. There are two key points in this 

 0 1 2 3 4 

0 1 0 1 0 0 

1 1 1 1 1 1 

2 0 0 0 0 0 

3 0 0 0 0 1 

1 0 1 0 …… 0 0 0 1 

Genotype Phenotype 

Chromosome 
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process, that is, crossover rate and crossover type. In this paper, we used adaptive crossover rate and single point 
crossover. 

In order to avoid the situation that individuals with high fitness cannot enter the progeny population, we let 
individuals whose fitness are higher than the average fitness of the population have a lower crossover rate [8]. The 
crossover rate could be expressed as: 

𝑃௖ ൌ  ቐ

𝑘ଵሺ𝑓௠௔௫ െ  𝑓ሻ
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ሺ𝟕ሻ 

where 𝑓௠௔௫ is the maximum fitness in the population,  𝑓௔௩௚ is the average fitness in the population, and 𝑓 is the greater 
fitness of the two individuals to be crossed. 𝑘ଵ and 𝑘ଶ are constants, and 𝑘ଵ ൏ 𝑘ଶ [8]. In this paper, we set 𝑘ଵ as 0.6 and 
𝑘ଶ as 0.9. 

Mutation. This step is to imitate gene mutation in nature. This process aims to randomly change part of the 
chromosomes to maintain the diversity of the population. There are also two key points in this process, that is, mutation 
rate and mutation type. In this paper, we used adaptive mutation rate and bit-flip mutation. 

This adaptive method of adjusting mutation rate is also to retain individuals with higher fitness. The mutation rate 
could be expressed as: 
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where 𝑓௠௔௫ is the maximum fitness in the population,  𝑓௔௩௚ is the average fitness in the population, and 𝑓′ is the greater 
fitness of the individual to be mutated. 𝑘ଷ and 𝑘ସ are constants, and 𝑘ଷ ൏ 𝑘ସ [8]. In this paper, we set 𝑘ଷ as 0.3% and 𝑘ସ 
as 0.8%. 

3.4 Neural Networks Based Classification Models 

In this paper, we build four Neural Networks with different topologies: 

 NN: a fully connected neural network with a single sigmoid hidden layer. The size of the hidden layer is 50. 
 NN2: a fully connected neural network with two hidden layers. The first hidden layer is a ReLU hidden layer of 

size 50, and the second hidden layer is a sigmoid hidden layer of size 10. 
 NN2_acc: a non-fully connected neural network with two hidden layers, whose topology is calculated by genetic 

algorithm using 𝐹௔௖௖ as the fitness function. The first hidden layer is a ReLU hidden layer of size 100, and the 
second hidden layer is a sigmoid hidden layer of size 50. 

 NN2_loss: a non-fully connected neural network with two hidden layers, whose topology is calculated by genetic 
algorithm using 𝐹௟௢௦௦ as the fitness function. The first hidden layer is a ReLU hidden layer of size 100, and the 
second hidden layer is a sigmoid hidden layer of size 50. 

All NNs were trained using backpropagation with the Cross-Entropy loss function, and the output layer had 4 output 
neurons, representing the four depression levels. In addition, we tried a variety of optimizers, and finally we chose the 
Adam optimizer with weight decay. In order to avoid the situation that some of the 12 models suffer from overfitting 
while others are still underfitting in the 12 models, we use early stopping. If the validation loss improves in 10 
consecutive iterations, then stop training. 

We use leave-one-participant-out cross-validation for the depression dataset [1]. The data of 11 of the 12 testers is 
used for training, and the data of the remaining 1 tester is used for testing, and repeat for all. In this way, 12 models will 
be trained. Finally, we average the 12 models to get the final results. 

3.5 Evaluation Measures 

To validate and compare the effectiveness of our models, we use accuracy for multi-class classification to measure 
the comprehensive performance of the model to classify all four classes. Since the depression dataset is uniform 
distributed for the four different classes, accuracy could be meaningful. Additionally, we will also compare the loss 
curves and the number of epochs required for the model to converge during training to evaluate the model’s stability 
and convergence speed. 
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4 Results and Discussion 

4.1 Model stability and convergence speed 

We trained NN2_acc and NN2_loss with a learning rate of 1e-3 for at most 800 epochs. And tried to train NN2 with 
the same hyperparameters, but the model was always early stopped very early (at most 120 epochs) and fallen into 
overfitting without getting a good result. To solve this problem, we had to reduce the learning rate to 1e-5 and increase 
training epochs to 8000. The loss curves during training are shown as Fig 2 (the loss curves of NN2_acc are similar to 
those of NN2_loss), and the classification accuracy of the models are shown as Table 2. It could be seen that the 
convergence situation of NN2 is far worse than that of NN2_loss, whose structure has been optimized by GA. Because 
in the left image, the training loss continues to decline at the end of the training. And from observing the validation loss, 
the models either did not have time to learn, which is underfitting, or triggered early stopping due to overfitting. In 
contrast, the models in the right image basically fully converge within 800 epochs. Therefore, the network whose 
structure was optimized by genetic algorithm could be not only more stable, but also converged faster. 

Table 2. Accuracy of models trained by NN2 and NN2_loss with different topologies on ALL features 

Models Accuracy 

NN2 (lr = 1e-3) 25.000 
NN2 (lr = 1e-5) 33.333 
NN2_loss 35.417 

Fig. 2. The loss curves during training NN2 and NN2_loss with ALL features 

      

      (a) The loss curves for training NN2                                                (b) The loss curves for training NN2_loss 

4.2 Classification effect  

Table 3 and Fig 3 shows the classification accuracy of the models trained by neural networks with different 
topologies on different features. It could be seen that the accuracy of NN1 on GSR, PD and ALL features is higher than 
NN2, which indicates for classification on depression dataset, simpler network would be more effective in most cases. 
This may because this classification task is relatively simple, a network with a simple structure could work, while a 
complex network structure would easily cause overfitting instead. However, for ST feature, the accuracy of NN2 is 
higher than that of NN1, this may because the relationship between ST feature and depression level is more complicated. 
A simple network is not enough to explore the connections, so a complex network structure works better. This shows 
that it is difficult for these fixed fully connected networks to meet tasks of different difficulty in a balanced manner. 

Besides, accuracy of NN2_acc and NN2_loss is generally higher than that of NN2, and more balanced in the 
performance of all four kind of features than NN1. This shows that networks optimized by GA could not only provide 
relatively better results, but also be robust to tasks of different difficulty, which bring a more balanced result. 

In addition, the accuracy of NN2_loss is higher than NN2_acc. Both of the structures of these two networks had been 
optimized by GA, but used different fitness functions. This shows 𝐹௟௢௦௦ has a better evaluation ability of the quality of 
the network structure than 𝐹௔௖௖. This may be due to the accuracy changes are not continuous, while loss changes are 
continuous, which means 𝐹௟௢௦௦ is more sensitive to network structure changes. For example, if predict value for a certain 
class of a model is gradually approaching ground truth, then we could say the model is actually developing in a good 
direction. In this process, its loss would definitely decrease, and 𝐹௟௢௦௦  would increase. However, the classification 
accuracy may not change, since the predict value is not close enough to ground truth. This means that the fitness of 
better chromosomes does not changed, and the population needs much more attempts to improve a little 𝐹௔௖௖ than 𝐹௟௢௦௦, 
that is, it is more difficult for the population to find the evolutionary direction. 
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Table 3. Accuracy of models trained by NNs with different topologies on different features 

Models GSR ST PD ALL 

NN1 34.375 27.083 31.771 34.375 
NN2 31.250 30.208 29.688 32.813 
NN2_acc 31.771 31.250 30.729 33.333 
NN2_loss 34.896 32.813 30.729 35.417 

Fig. 3. Accuracy of models trained by NNs with different topologies on different features 

5 Conclusion and Future Work 

Our work shows that genetic algorithm can be used to automatically optimize the structure of neural network 
according to task requirements. This can save a lot of time for people to try different network topologies, and perform 
better than the topological structure estimated by people based on experience. Traditional fully connected networks may 
contain redundant connections, affecting the performance of the model, or causing overfitting. Genetic algorithm is 
equivalent to an intelligent automatic pruning the network. Our experiments have proved that this method effectively 
improved the classification effect based on neural network in terms of model stability, convergence speed, and 
classification accuracy. Besides, we found that the fitness function of GA should be sensitive to chromosome changes. 
Otherwise, it will be difficult for the population to find an evolutionary direction. 

For future work, more research could be used to explore the impact of GA on other hyperparameters in NN, such as 
learning rate, activation function, optimizer parameters, and so on. Also, the influence of GA parameters on the 
optimization effect of NN structure is also worth studying, such as population size, number of evolutionary generations, 
selection, crossover and mutation type, crossover and mutation rate, and so on. In addition, in this paper, we only 
discussed the case of no cross-layer connection, while cross-layer connections could provide more flexible network 
structures. This can also be a potential research direction. 
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