
Neural Network Structure Optimization Based on Genetic Algorithm

Ziying Guo

Research School of Computer Science
Australian National University

Canberra, Australia
u7150131@anu.edu.au

Abstract. The construction and adjustment of a neural network is very complicated. Because it involves many
hyperparameters, such as the structure of the neural network, including the number of hidden layers and hidden
neurons, as well as the learning rate and so on. Adjusting a neural network would be very time-consuming, but these
parameters greatly affect the effect of model training. This article aims to propose a method to automatically optimize
the network topology. We use a binary vector to represent the structure of a neural network and optimize the topology
of the neural network through genetic algorithm. The experiments on the depression dataset [1] prove that the
network optimized by the genetic algorithm can not only improve the classification accuracy, but also greatly
accelerate the convergence speed. Besides, we found the design tactics of GA’s fitness function.

Keywords: Neural Network; Classification; Genetic Algorithm; Depression

1 Introduction

With increasing social pressure, the prevalence of depression is increasing year by year. Depression is a kind of
affective disorder [2], and it is a serious chronic health condition. The symptoms are mainly long-lasting depression,
unable to experience happiness in any activities. In severe cases, it may also cause suicidal attempts [3]. Therefore, an
effective diagnosis of depression is the key to avoiding tragedies. But most of the existing diagnosis methods are based
on self-reported questionnaires, that are not objective enough. Hence, it is an objective and efficient way to use neural
networks to identify and classify different levels of depression.

The development of neural networks has improved the quality of human life in various aspects, and the research on
improving the performance of neural networks has never stopped. Nowadays, neural networks have a very wide range
of applications in all aspects. However, NNs have very complicated configurations including network topologies and
several hyperparameters, which greatly affect the performance of classification effect based on neural networks. [4]
Usually, people need to estimate the complexity of the task to estimate the approximate topology of the neural network.
Then repeated testing and adjusting the network based on the results, which is troublesome and time-consuming. This
paper aims to overcome this problem by finding a way to automatically optimize the network structure without human
labor.

Genetic algorithm (GA) is a meta-heuristic inspired by the process of natural selection and are often viewed as
function optimizers [5]. This algorithm represents the candidate solution as a vector called chromosome, and
continuously optimizes the population genes according to the fitness function through biologically inspired operators
such as mutation, crossover and selection, which is very suitable for solving NP problems.

In this paper, we conducted experiments on the depression dataset [1]. We trained several multi-class classifiers
based on the neural networks with four different structures. Two of them were estimated by people according to
experience, which were regarded as the baselines. The other two were optimized by genetic algorithm with different
fitness functions. And proved the usability of our method by comparison these results.

2 Dataset

In this paper, we used the depression dataset from Xuanying Zhu et al.’s work [1]. This dataset records the 192
biological signals of 12 testers (with no prior knowledge of depression recognition) during they are watching 16
depression videos. The biological signals contain Galvanic Skin Response (GSR) with 23 features, Skin Temperature
(ST) with 23 features, Pupillary Dilation (PD) with 39 features, and all features (ALL) with 85 features. This dataset
divides the depression level into 4 categories: 0 for no or minimal depression, 1 for mild depression, 2 for moderate
depression, and 3 for severe depression.

2 Ziying Guo

3 Methodology

3.1 Data preprocessing

Normalization. Different features often have different measurement standards and units, which will affect the results
of data analysis. In order to eliminate this kind of impacts, the data needs to be normalized to be restricted to the same
scale. In this paper, we use Z-score normalization:

𝑥∗ ൌ
𝑥 െ 𝜇
𝜎

ሺ𝟏ሻ

whereμis the mean, andσis the standard deviation of the original data. For the depression dataset, the biological signal
of each individual has subtle differences, normalization can also weaken these differences between different testers.

Features Selection. When dealing with data containing a large number of features, features selection becomes very
necessary. Because these features are likely to contain duplicate information and information irrelevant to classification,
which will affect classification performance. Also, high-dimensional data is not only not conducive to model
convergence, but also computationally expensive. Hence, dimensionality reduction cannot be ignored. In this paper, we
use Genetic Algorithm (GA) to perform features selection.

We use a binary array whose length is the number of features to represent a chromosome. 1 means the corresponding
feature is retained while 0 means removed. All the values of the chromosomes of the initial population are 1, which
means use all features. Through repeated fitness-based selection, crossover and mutation, the chromosomes of each
individual in the population would be very similar and tend to no longer change. Finally perform feature selection based
on the chromosome array of the individual with best fitness.

In this paper, we continue to use the main parameters in Xuanying Zhu et al.’s work [1] as Table 1. In addition, we
define the fitness function based on Linear Discriminant Analysis (LDA). The core idea of LDA is minimizing the
within-class scatter and maximizing the between-class scatter. LDA could easily handle the case where the within-class
frequencies are unequal [6].

We calculate the within-class scatter matrix SW and the between-class scatter matrix SB according to the following
formulas:

Sௐ ൌ෍෍ሺx െ m୧ሻሺx െ m୧ሻ୘

୶∈୒౟

େ

୧ୀଵ

ሺ𝟐ሻ

𝑆஻ ൌ෍ ෍ሺ𝑚௜ െ 𝑚ሻሺ𝑚௜ െ 𝑚ሻ்

௫∈ே೔

஼

௜ୀଵ

ሺ𝟑ሻ

where C is number of classes, m is the mean of the whole data, Ni is the number of samples of class i and mi is the mean
of class i. Therefore, the fitness F is defined as:

𝐹 ൌ
𝑡𝑟ሺ𝑆஻ሻ

𝑡𝑟ሺ𝑆ௐሻ
ሺ𝟒ሻ

Finally, we got 16 GSR features, 7 ST features, 22 PD features, and 45 for ALL of these features.

Table 1. Implementation settings for GA

GA Parameter Value

Chromosome encoding Binary
Chromosome length Number of features
Chromosome initialization All 1s
Population size 100
Crossover rate 0.8
Mutation rate 1 / (length of chromosome)
Crossover type Uniform crossover
Mutation type Uniform mutation
Selection type Roulette wheel selection
Number of generations 1000

Neural Network Structure Optimization Based on Genetic Algorithm 3

3.2 Genetic representation of structured Neural Networks

When applying structure optimization to Neural Networks through Genetic Algorithm, one issue is how to represent
the structure of a neural network as a chromosome [4]. In this paper, we do not consider cross-layer connections. This
means that the number of connections should be at most mn in two layers that respectively contain m and n neurons,
which is fully connected. And our target is to find which connections to be deleted to obtain the network structure with
the best classification effect.

To overcome this problem, we consider the connections between any two layers of a neural network as a two-
dimensional matrix, called connection matrix C. Element cij in C represents the connection between neuron i in the
current layer and neuron j in the next layer. If cij equals 1, connection exists, otherwise, the connection does not exist
[4]. The relation between the genotype and phenotype are shown in Fig 1. Flatten the connection matrix C could obtain
a binary vector of length mn, which should be the chromosome.

Fig. 1. Example of the relation between the genotype and phenotype

In this paper, we constructed a Neural Network with two hidden layers, the number of hidden layer neurons were 100

and 50, which means this network should contains 3 genotype connection matrices. They were respectively:

 C1: a 𝑁 ൈ 100 matrix, represents connections between input neurons and neurons in the first hidden layer.
 C2: a 100 ൈ 50 matrix, represents connections between neurons in the first and second hidden layer.
 C3: a 50 ൈ𝑀 matrix, represents connections between neurons in the second hidden layer and output neurons.

where N is number of input features, M is number of depression levels, which is 4. So the chromosome would be the
result of flattening and concatenating these matrices.

3.3 Genetic algorithm

After encoding the chromosomes, the next step is to initialize the population. In this paper, we set the population size
to 500 and initialize the population chromosome sequences randomly. After that, this population would undergo 20
rounds of evolution, including selection, crossover and mutation, and finally form a new population with better
chromosomes.

Fitness function. Optimizing the topology of a neural network is an NP problem, which means that it is difficult to
solve, but its solutions could be evaluated relatively easier. Fitness function is used to measure the quality of genes, that
is, the solutions. The main purpose of optimizing the network structure is to improve classification testing accuracy and
reduce testing loss. So we built two fitness functions in accordance with these two ideas.

In this paper, we used leave-one-participant-out cross-validation to train 12 models for 5 epochs with a learning rate
of 1e-3. The structure of the network was represented by the chromosome. And calculated the average testing accuracy
and loss of the models. Then the two fitness functions were defined as:

𝐹௔௖௖ ൌ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ହ ሺ5ሻ

𝐹௟௢௦௦ ൌ
1

𝐿𝑜𝑠𝑠ହ
ሺ𝟔ሻ

Selection. This step is to imitate natural selection in nature. Individuals with higher fitness have a greater chance of
surviving. In order to achieve a better selection strategy with less complexity, we used Binary Tournament Selection.
Each time randomly selecting two individuals from the entire population with equal probability, then choose the
individual with the higher fitness of the two to enter the offspring population [7].

Crossover. This step is to imitate gene recombination and crossover in nature. This is a process that recombine and
distribute genes from two parental chromosomes and form progeny chromosomes. There are two key points in this

 0 1 2 3 4

0 1 0 1 0 0

1 1 1 1 1 1

2 0 0 0 0 0

3 0 0 0 0 1

1 0 1 0 …… 0 0 0 1

Genotype Phenotype

Chromosome

4 Ziying Guo

process, that is, crossover rate and crossover type. In this paper, we used adaptive crossover rate and single point
crossover.

In order to avoid the situation that individuals with high fitness cannot enter the progeny population, we let
individuals whose fitness are higher than the average fitness of the population have a lower crossover rate [8]. The
crossover rate could be expressed as:

𝑃௖ ൌ ቐ

𝑘ଵሺ𝑓௠௔௫ െ 𝑓ሻ

𝑓௠௔௫ െ 𝑓௔௩௚
 𝑓 ൒ 𝑓௔௩௚

𝑘ଶ 𝑓 ൏ 𝑓௔௩௚

ሺ𝟕ሻ

where 𝑓௠௔௫ is the maximum fitness in the population, 𝑓௔௩௚ is the average fitness in the population, and 𝑓 is the greater
fitness of the two individuals to be crossed. 𝑘ଵ and 𝑘ଶ are constants, and 𝑘ଵ ൏ 𝑘ଶ [8]. In this paper, we set 𝑘ଵ as 0.6 and
𝑘ଶ as 0.9.

Mutation. This step is to imitate gene mutation in nature. This process aims to randomly change part of the
chromosomes to maintain the diversity of the population. There are also two key points in this process, that is, mutation
rate and mutation type. In this paper, we used adaptive mutation rate and bit-flip mutation.

This adaptive method of adjusting mutation rate is also to retain individuals with higher fitness. The mutation rate
could be expressed as:

𝑃௠ ൌ ቐ

𝑘ଷሺ𝑓௠௔௫ െ 𝑓ᇱሻ

𝑓௠௔௫ െ 𝑓௔௩௚
 𝑓′ ൒ 𝑓௔௩௚

𝑘ସ 𝑓′ ൏ 𝑓௔௩௚

ሺ𝟖ሻ

where 𝑓௠௔௫ is the maximum fitness in the population, 𝑓௔௩௚ is the average fitness in the population, and 𝑓′ is the greater
fitness of the individual to be mutated. 𝑘ଷ and 𝑘ସ are constants, and 𝑘ଷ ൏ 𝑘ସ [8]. In this paper, we set 𝑘ଷ as 0.3% and 𝑘ସ
as 0.8%.

3.4 Neural Networks Based Classification Models

In this paper, we build four Neural Networks with different topologies:

 NN: a fully connected neural network with a single sigmoid hidden layer. The size of the hidden layer is 50.
 NN2: a fully connected neural network with two hidden layers. The first hidden layer is a ReLU hidden layer of

size 50, and the second hidden layer is a sigmoid hidden layer of size 10.
 NN2_acc: a non-fully connected neural network with two hidden layers, whose topology is calculated by genetic

algorithm using 𝐹௔௖௖ as the fitness function. The first hidden layer is a ReLU hidden layer of size 100, and the
second hidden layer is a sigmoid hidden layer of size 50.

 NN2_loss: a non-fully connected neural network with two hidden layers, whose topology is calculated by genetic
algorithm using 𝐹௟௢௦௦ as the fitness function. The first hidden layer is a ReLU hidden layer of size 100, and the
second hidden layer is a sigmoid hidden layer of size 50.

All NNs were trained using backpropagation with the Cross-Entropy loss function, and the output layer had 4 output
neurons, representing the four depression levels. In addition, we tried a variety of optimizers, and finally we chose the
Adam optimizer with weight decay. In order to avoid the situation that some of the 12 models suffer from overfitting
while others are still underfitting in the 12 models, we use early stopping. If the validation loss improves in 10
consecutive iterations, then stop training.

We use leave-one-participant-out cross-validation for the depression dataset [1]. The data of 11 of the 12 testers is
used for training, and the data of the remaining 1 tester is used for testing, and repeat for all. In this way, 12 models will
be trained. Finally, we average the 12 models to get the final results.

3.5 Evaluation Measures

To validate and compare the effectiveness of our models, we use accuracy for multi-class classification to measure
the comprehensive performance of the model to classify all four classes. Since the depression dataset is uniform
distributed for the four different classes, accuracy could be meaningful. Additionally, we will also compare the loss
curves and the number of epochs required for the model to converge during training to evaluate the model’s stability
and convergence speed.

Neural Network Structure Optimization Based on Genetic Algorithm 5

4 Results and Discussion

4.1 Model stability and convergence speed

We trained NN2_acc and NN2_loss with a learning rate of 1e-3 for at most 800 epochs. And tried to train NN2 with
the same hyperparameters, but the model was always early stopped very early (at most 120 epochs) and fallen into
overfitting without getting a good result. To solve this problem, we had to reduce the learning rate to 1e-5 and increase
training epochs to 8000. The loss curves during training are shown as Fig 2 (the loss curves of NN2_acc are similar to
those of NN2_loss), and the classification accuracy of the models are shown as Table 2. It could be seen that the
convergence situation of NN2 is far worse than that of NN2_loss, whose structure has been optimized by GA. Because
in the left image, the training loss continues to decline at the end of the training. And from observing the validation loss,
the models either did not have time to learn, which is underfitting, or triggered early stopping due to overfitting. In
contrast, the models in the right image basically fully converge within 800 epochs. Therefore, the network whose
structure was optimized by genetic algorithm could be not only more stable, but also converged faster.

Table 2. Accuracy of models trained by NN2 and NN2_loss with different topologies on ALL features

Models Accuracy

NN2 (lr = 1e-3) 25.000
NN2 (lr = 1e-5) 33.333
NN2_loss 35.417

Fig. 2. The loss curves during training NN2 and NN2_loss with ALL features

 (a) The loss curves for training NN2 (b) The loss curves for training NN2_loss

4.2 Classification effect

Table 3 and Fig 3 shows the classification accuracy of the models trained by neural networks with different
topologies on different features. It could be seen that the accuracy of NN1 on GSR, PD and ALL features is higher than
NN2, which indicates for classification on depression dataset, simpler network would be more effective in most cases.
This may because this classification task is relatively simple, a network with a simple structure could work, while a
complex network structure would easily cause overfitting instead. However, for ST feature, the accuracy of NN2 is
higher than that of NN1, this may because the relationship between ST feature and depression level is more complicated.
A simple network is not enough to explore the connections, so a complex network structure works better. This shows
that it is difficult for these fixed fully connected networks to meet tasks of different difficulty in a balanced manner.

Besides, accuracy of NN2_acc and NN2_loss is generally higher than that of NN2, and more balanced in the
performance of all four kind of features than NN1. This shows that networks optimized by GA could not only provide
relatively better results, but also be robust to tasks of different difficulty, which bring a more balanced result.

In addition, the accuracy of NN2_loss is higher than NN2_acc. Both of the structures of these two networks had been
optimized by GA, but used different fitness functions. This shows 𝐹௟௢௦௦ has a better evaluation ability of the quality of
the network structure than 𝐹௔௖௖. This may be due to the accuracy changes are not continuous, while loss changes are
continuous, which means 𝐹௟௢௦௦ is more sensitive to network structure changes. For example, if predict value for a certain
class of a model is gradually approaching ground truth, then we could say the model is actually developing in a good
direction. In this process, its loss would definitely decrease, and 𝐹௟௢௦௦ would increase. However, the classification
accuracy may not change, since the predict value is not close enough to ground truth. This means that the fitness of
better chromosomes does not changed, and the population needs much more attempts to improve a little 𝐹௔௖௖ than 𝐹௟௢௦௦,
that is, it is more difficult for the population to find the evolutionary direction.

6 Ziying Guo

Table 3. Accuracy of models trained by NNs with different topologies on different features

Models GSR ST PD ALL

NN1 34.375 27.083 31.771 34.375
NN2 31.250 30.208 29.688 32.813
NN2_acc 31.771 31.250 30.729 33.333
NN2_loss 34.896 32.813 30.729 35.417

Fig. 3. Accuracy of models trained by NNs with different topologies on different features

5 Conclusion and Future Work

Our work shows that genetic algorithm can be used to automatically optimize the structure of neural network
according to task requirements. This can save a lot of time for people to try different network topologies, and perform
better than the topological structure estimated by people based on experience. Traditional fully connected networks may
contain redundant connections, affecting the performance of the model, or causing overfitting. Genetic algorithm is
equivalent to an intelligent automatic pruning the network. Our experiments have proved that this method effectively
improved the classification effect based on neural network in terms of model stability, convergence speed, and
classification accuracy. Besides, we found that the fitness function of GA should be sensitive to chromosome changes.
Otherwise, it will be difficult for the population to find an evolutionary direction.

For future work, more research could be used to explore the impact of GA on other hyperparameters in NN, such as
learning rate, activation function, optimizer parameters, and so on. Also, the influence of GA parameters on the
optimization effect of NN structure is also worth studying, such as population size, number of evolutionary generations,
selection, crossover and mutation type, crossover and mutation rate, and so on. In addition, in this paper, we only
discussed the case of no cross-layer connection, while cross-layer connections could provide more flexible network
structures. This can also be a potential research direction.

References

1. X. Zhu, T. Gedeon, S. Caldwell and R. Jones, “Detecting emotional reactions to videos of depression”. In 23rd International
Conference on Intelligent Engineering Systems (INES), pp. 000147-000152. (2019)

2. N. Cummins, S. Scherer, J. Krajewski, S. Schnieder, J. Epps, and T. F. Quatieri, “A review of depression and suicide risk
assessment using speech analysis”. Speech Commun. vol. 71, pp. 10-49. (2015)

3. K. Hawton, C. C. i Comabella, C. Haw, and K. Saunders, “Risk factors for suicide in individuals with depression: a systematic
review,” J.Affect. Disord. vol. 147, no. 1-3, pp. 17-28. (2013)

4. T. Shinozaki and S. Watanabe, “Structure discovery of deep neural network based on evolutionary algorithms”. IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 4979-4983. (2015)

5. Whitley, D. “A genetic algorithm tutorial”. Statistics and Computing. Vol. 4, pp. 65-85. (1994)
6. S. Balakrishnama and A. Ganapathiraju. “Linear discriminant analysis-a brief tutorial”. Inst. Signal Inf. Process. Vol. 18, pp. 1–8.

(1998)
7. Miller, B. and D. Goldberg. “Genetic Algorithms, Tournament Selection, and the Effects of Noise”. Complex Syst. 9. (1995)
8. Wen-Yang Lin, Wen-Yung Lee and Tzung-Pei Hong. “Adaptive Crossover Rate and Mutation Rate in Genetic Algorithms”.

Journal of Information Science and Engineering, Vol. 19 No. 5, pp. 889-903. (2003)

26

28

30

32

34

36

NN1 NN2 NN2_acc NN2_loss

A
cc
u
ra
cy

GSR ST PD ALL

