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Abstract. The Static Facial Expressions in the Wild (SFEW) is a col-
lection of facial emotions extracted from movies, which approximates
real-world conditions and has excellent value in research. We experiment
with CasCade-Correlation architecture(CasCor) preprocessed by LPQ
and PHOG descriptors.[1], and VGG-16 on the original images. The re-
sult is compared with a non-linear SVM in the SPI baseline, [1], and
it shows that VGG-16 performs significantly better than CasCor and
SVM, while CasCor does not give remarkable performance. Further ex-
periments show that VGG can achieve a 71.11% on test set and have
huge potential on facial expression classification, while CasCor also has
advantages on its architecture.

1 Introduction

Facial expressions are generated by the muscle change of individuals[l] and
have a broad application space in Human-computer interaction (HCI), psychol-
ogy, and the communication industry. Within the past decade, researchers have
spent significant effort analyzing facial expressions because of the limitations of
datasets. [4] The individual differences among subjects are one of the problems.
Eye colors, textures, hairstyles, and many other features are used to distinguish
individuals. To address the varieties of individual features, the dataset is sup-
posed to contain a large sample of faces of varying backgrounds. [4]. Classification
of emotions is another difficulty. The determination of the number of emotions
and the reliability of labeling data is hard to justify. Most facial expression data
are obtained in a lab-controlled environment, and subjects are asked to perform
certain emotions. Although this approach can solve the uncertainty in justifica-
tion, it is of limited use in research.

The major drawback of lab-controlled data sets is because the emotions in
the real world are more complex. Head orientations, the background of the im-
ages, the degree of expressions, and many other aspects vary in the actual scene.
Therefore, the SFEW is of great value in research since the images are based
on movie frames that have high similarity to real-world scenarios. It considers
the uncertainty like head movements, varied illumination, age, gender, and oc-
clusion. [1] Regarding the classification of emotions, six emotions, enjoyment or
happiness, sadness, fear, anger, disgust, and surprise, are widely accepted as the
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categories. [5] Combined with the neutral class, the seven categories are regarded
as the labels for the SFEW.

1.1 Dataset and problem

The SFEW dataset contains 675 images, and each category has 100 images ex-
cept that Disgust label has only 75 samples. We have another dataset which
is the SFEW processed by the texture-based descriptors, LPQ and PHOG [1].
Texture features of each image are extracted by the descriptors and encoded as
principal components, and the first five are selected for each descriptor. Local
Phase Quantization (LPQ) is based on the discrete Fourier transform (DFT),
which is highly insensitive to blur and illumination [2], while the Pyramid of
Histogram of Oriented Gradients (PHOG) is a descriptor based on the HOG
and has shown good performance in image classification. [3] Descriptors pro-
cessed data is used for the CasCade-Correlation architecture (CasCor), while
the original SFEW is directed used in VGG-16.

The goal of the task is to take in the inputs, either images or principal compo-
nents described above, and classify each sample into 7 categories: angry, disqust,
fear, happy, sad, surprise and the neutral class. The facial expression classi-
fication is worth solving because this technique is required in human-machine
interfaces such as user authentication, video surveillance, caption generation. [6]

1.2 Outline of Investigation
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Fig. 1. Outline of Steps

There are four steps in the facial emotions classification task. (see Fig. 1)

The first step is preprocessing the input. This includes extracting features
with descriptors (LPQ and PHOG) followed by normalization and transforming
the original images to an appropriate size for VGG-16.

The second step is to build the model, a CasCor architecture, and a VGG-16
model. The initial parameters of CasCor are random initialization while we use
the pre-trained VGG-16 model[10, 11]. After building the model, the parameters
are tuned during the training.

The third step is to label the input sample, in which a winner-takes-all
method is used to classify the models’ output. Winner-takes-all is to use the
largest prediction value of the label as the prediction result.

The final step is an evaluation which includes evaluating the model and com-
paring the result of different models. We use K-fold cross-validation to validate
the VGG model.

The detail of methods applied in each step is described in the next section.
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2 Method

2.1 Preprocess
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Fig. 2. Original distribution of LPQ and PHOG separately

For the descriptors processed dataset, we get a table of size 675 x 12 in which
there are 5 columns for the principal components of LPQ, and 5 columns for the
principal components of PHOG. The other two columns are for the label (integer
between 1 — 7) and the source of the original movie frame. The input features
to the model is either the LPQ or PHOG principal components separately or
combining them together. To investigate the performance of different input, we
split the data into three sets in which only the related features and labels are
selected. (675 x 6 for LPQ dataset, 675 x 6 for PHOG dataset and 675 x 10 for
combined dataset). After inspecting the three sets, one of the sample of PHOG is
missing, and dropping it leads to 674 samples for PHOG and combined dataset
respectively.

The distribution of the LPQ and PHOG data sets are plotted, (see Fig. 2)
and the Kernel density estimation (KDE) shows the features are well distributed
around 0. However, the hidden problem is the values are floating point numbers
and are too small which might cause problem in the training due to the precision.
We use z-score to normalize the data which converts all values to a large scale
with an average of zero and standard deviation of one.

For the original images input to the VGG-16, we resize the shorter edge of
each image to 256 while preserving the ratio of width and height. After that, we
random crop a 224 x 224 image from the resized sample and normalize with mean
0.485,0.456,0.406 and standard deviation 0.229, 0.224,0.225, which are obtained
from the ImageNet [10]. The final input to the VGG-16 is 675 tensors of size
3 x 224 x 224 along with the label (from 0 to 6).

2.2 Model and evaluation

The Cascade-Correlation (CasCor) architecture is a supervised learning algo-
rithm for artificial neural networks without determining its size and topology. It
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Fig. 3. Adding the hidden neuron. Red boxes represent live weights. Others are frozen
weights [12]

can build deep nets without the dramatic slow down in back-propagation neural
networks with more than one or two hidden layers. [8] Many variations of Cas-
Cor, such as LoCC, which builds a priori knowledge of the task into the network
and shows good performance on face recognition tasks. [9]

The CasCor architecture is a learning algorithm that starts with input and
output units and adds a hidden unit in each iteration. The input features are
augmented with a bias, which is all ’1s’, and then added to the model. The
initial state of the model contains only input and output units which is the
same as a neural network with no hidden neurons. In the first iteration, the live
weights shown in the diagram are initialized randomly and then updated with
the back-propagation technique. The hyper-parameters and methods used are
cross-entropy loss, adam optimizer with learning rate 0.001, epochs of 500, and
the batch size of 0.001. To overcome the overfitting problem in training, I reserve
5% of the data for final testing, and 90% of the rest data for training, and 10%
for validation. After the weights associated with output units (live weights) have
been tuned, the validation set is used to evaluate the model. If the validation
loss is acceptable (< 0.1), we accept the model. Otherwise, a new hidden unit
will be added to the network.

The hidden unit is selected from a candidate pool such that the candidate
has the maximum S, the sum over all output units of the magnitude of the
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correlation between the candidate unit’s value V' and E.,.,, the residual output
error. [8] For this multi-classification task, the residual output error E.,, is
defined as the difference of the predicted probability of the correct class and 1.
The predicted probability for each class is from applying softmax to the output
units trained previously. As shown in Fig. 3, when adding a candidate unit,
the input connections are from all of the network’s external inputs and all pre-
existing hidden units which need to be trained iteratively. [8]. The candidate
unit V is thus a linear multiplication of inputs and existing hidden units’ values.
Therefore, S is defined as

S=3" 13 (V= V) (Bprs — o)

o p

where o is the network output and p is the training pattern. V and E,,.,. are V and
E.,, averaged over all patterns. [8] The input weights of the candidate unit are
trained with the back-propagation same as the previous one with F.,., as the true
label and 1/S as the loss function. Therefore, the input weights can be adjusted
to maximize S. The candidate pool is a set of candidate units with different sets
of random initial weights. We use 4 for the candidate pool size and randomly
initialize the incoming weights to the candidate unit. The candidate unit with the
maximum S is selected and is added to the neural network. In implementation,
the input weights to the new hidden unit are frozen, and the weights connecting
to the output units are live again. The incoming weights to the new hidden
unit will not be saved, but the new hidden unit’s value will be calculated and
augmented to the training, validation, and test inputs respectively, which acts
as saving the model. This is the end of the first iteration. The next iteration
starts from training weights of output units described above. In total, there are
32 iterations and 32 hidden units will added to the CasCor architecture in the
end. The final model is evaluated on the reserved test set.

VGG is a deep convolutional network with small convolution filters (3 x 3)
and performs well on large-scale image recognition tasks. [11] The architecture is
shown in Table 1. Each convolutional layer uses a 3 x 3 filter with padding 1, and
Max-pooling is performed over a 2 x 2 window with stride 2. The last three layers
are the fully connected (FC) layers with output channels 4096,4096,7 respec-
tively, and the first two FC layers are followed by a Dropout with probability
0.5. Except for the last layer, all layers are using the ReLLU activation function.
During the training, we use the cross-entropy loss, stochastic gradient descent
(SGD) with momentum 0.9, and the starting learning rate 0.01. The learning
rate decreases by a factor 0.1 after each epoch. To evaluate the model, 10% of the
images are reserved for final testing, and the rest are for training combined with
5-fold cross-validation. In each train-validation splitting, a batch size of 64 and
max-epoch 10 are used. The initialization of parameters is from a pre-trained
VGG-16 model, which has been trained on a large number of images. [10]
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Table 1. Architecture of VGG-16: convolutional layer parameters are conv-(receptive
field size)-(output channel)

Layer number| ConvNet Configuration |Activation
1 conv-3-64 ReLLU
2 conv-3-64 ReLLU

MaxPool
3 conv-3-128 ReLLU
4 conv-3-128 ReLLU
MaxPool
5 conv-3-256 ReLLU
6 conv-3-256 ReLLU
7 conv-3-256 ReLU
MaxPool
8 conv-3-512 ReLLU
9 conv-3-512 ReLLU
10 conv-3-512 ReLU
MaxPool
11 conv-3-512 ReLU
12 conv-3-512 ReLU
13 conv-3-512 ReLLU
MaxPool
14 FC-4096 (Dropout prob-0.5)| RELU
15 FC-4096 (Dropout prob-0.5)| RELU
16 FC-7 None
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3 Experiments and Results

The baseline classification with the non-linear SVM calculated by averaging
the accuracy for the LPQ and PHOG sets is 19.0%. [1] Using the parameters
described above, the CasCor architecture gives an accuracy of 16.9% and loss of
2.0 on the reserved test data set. If the two sets are combined as the input to
the model, CasCor gives the accuracy of 16.1%. CasCor does not show better
performance compared with the benchmark result.
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Fig. 4. Loss and accuracy change during the training for LPQ dataset - CasCor

With the settings described in the last section, the loss and accuracy change
during the training for the LPQ data set are plotted. (see Fig. 4) The train
and test accuracies are disturbing a lot in training, while the loss gives a much
smoother curve. Training loss starts to increase after the 25th iteration, while
the test loss remains in a small range. It means the model cannot learn more
features from the dataset. One disadvantage of batch training in CasCor is that
the training speed slows down a lot due to many back-propagations (4 candidate
units’ weights and output units’ weights in one iteration).

The evaluation of the model relies on the reserved dataset, and the traditional
K-fold cross-validation is not suitable for CasCor, a kind of dynamic model.
Once a candidate unit is selected from the candidate pool, the parameters of
connections into that unit are frozen. If we need to use a new split of train
and validation sets, we have to extend the network, resulting in an extremely
deep network. From Fig. 4, a network with 25 hidden units (depth is 25) started
performing worse.

The result of VGG-16 on the reserved test data is 35.29%. The comparison
of three models are displayed in Table 2. The accuracy increase by about 80%
compared with the baseline model.

Many experiments have proved that CNN-based models can perform well on
image recognition, especially with large training samples. For example, 75.2%
test accuracy on FER2013 data set [14] and 48% on Kaggle Facial Expression
Recognition Challenge data [13]. Since the size of the SFEW data set is small,
we perform data augmentation to generate more images, where we add three
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other images for each image: flip, rotation with 90 degrees and rotation with 180
degrees. Hence, the new data set contains 2700 images. With the same setting
as before, we train and evaluate VGG-16 on this dataset, and we get 62.96% test
accuracy in the end.

Table 2. The comparison of accuracy on different models

SVM(baseline) |CasCaor|VGG-16
19.0% 16.9% | 35.29%
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Fig. 5. Loss and accuracy change during the training - VGG

The loss and accuracy change during training are plotted. (see Fig. 5) It is a
5-fold training, and each has 10 epochs. The little drop in accuracy figure and
the little increase in the loss figure correspond to the first epoch in each splitting.
The model needs to learn from the new train and validation data sets for several
epochs. The figure does not imply overfitting or convergence, which indicates the
VGG-16 still has possibilities to learn from image features. A further experiment
is to use 10-fold training, which involves more training and reuses the data more
times. The accuracy on the reserved test set is 71.11%. The results of VGG-16
are shown in Table 3, which indicates the data augmentation is beneficial for
VGG model training.

Table 3. The comparison of test accuracy with VGG-16 on different datasets and
validation techniques. SFEW _aug is the augmented data set

SFEW 5-fold|SFEW _aug 5-fold|SFEW _aug 10-fold
35.29% 62.96% 71.11%

One disadvantage of VGG-16 is the training time, which is significantly longer
than CasCor. The approximate training time is shown in Table 4. It is measured
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on the GPU of NVIDIA GeForce RTX 3090 with the SFEW data set. The
training time on augmented data set is 2 — 3 times longer than on the original
data set.

CasCor can achieve quicker training with the quick prop algorithm which is
calculus efficient based on second-order differentiation, and out-performs other
backprop-like algorithms [8]. However, we do not use the activation function in
this task, so it is not suitable here, although it is widely used in other situations.

Table 4. The approximate training time of different models on SFEW

CasCor VGG-16
12 minutes|60 minutes

4 Conclusion and Future Work

Based on the experiment results, the CasCor architecture performs worse than
the non-linear SVM shown in the benchmark, while VGG-16 can achieve much
better accuracy on the SFEW dataset.

Cascade-correlation architecture can be regarded as a special kind of neural
network whose hidden layers contain only one hidden unit, and the unit is con-
nected to both the input and output units. A possible variation is adding cascade
chunks with a fixed size set prior to training instead of adding one hidden unit
each time. [9]

Another modification is regarding the training speed of CasCor, and we can
train candidate units in the candidate pool in parallel because they do not in-
teract with one another or affect the active network during training. [8] With
parallel computation, we can increase the pool size to ensure the performance
of the model.

We can also use different descriptors to extract more accurate features from
the original images, which then act as the input to the CasCor.

Regarding the VGG-16 model, data augmentation helps increase the facial
expression classification significantly and gives a 71.11 test accuracy, which im-
plies the ability to perform classification in a real-world environment. Further
improvement can focus on increasing data size with different augmentation tech-
niques. Related research has shown that GAN can generate different styles from
a source image and help improve the image classification accuracy. [15]

Also, we can modify the VGG models with different techniques such as reg-
ularization, batch normalization, or combined them with different methods to
improve the model. Batch normalization is an effective method that can accel-
erate training and saves much time [16].
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