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Abstract. Traditionally stress detection techniques are unreliable as they don’t use physiological responses. This
study investigates the usefulness of EEG data in predicting whether an individual is stressed or calm at any given
instance. The predictions are conducted using a modified version of Cascor known as Casper which shows potential
when combined  with  effective  pre-processing techniques;  channel  selection and feature selection,  to  reduce  the
dimensionality of the data. A method using variance and another using a genetic algorithm will be investigated to
obtain the optimal channels and features. The Casper network performed better than a regular feed-forward network
in some while performing worse in others however this could be due to ineffective feature selection as it performed
better using the variation method than the genetic algorithm method. 
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1   Introduction

Since the start of the COVID-19 pandemic, conditions have remained uncertain with people losing jobs at an alarming
rate and constant lock-downs across the globe. With all this uncertainty, it begs the question, what impact is this having
on people’s mental health? Results from polls show that a large number of adults are experiencing mental health issues
as  a  direct  result  of  the stress  caused  by this  uncertainty  (The Implications  of  COVID-19 for  Mental  Health and
Substance Use, 2021). According to a paper written on using thermal super-pixels for bimodal stress recognition (n.d.),
traditional methods are unable to detect stress instantaneously or continuously with those that can, being based on self-
reporting which reduces accuracy. The same paper outlines that it is much more reliable to use physiological responses
for detecting stress than any of these methods. As stress causes a change in electrical activity in the brain (Gaikwad and
Paithane, 2017), Electroencephalogram (EEG) data would be an ideal source for this purpose.

There are many different machine learning techniques which could be used to predict stress based on the data from the
EEG. One particularly powerful method is the Casper network. It is based on Cascor which proved to be effective for
training neural networks much faster. Cascor starts with just the input and output layers then trains and adds a single
neuron at a time whilst freezing all previously added neurons. This makes Cascor very fast as back propagation is
essentially not used and the earlier epochs take less time due to the reduced number of hidden neurons (compared to a
regular feed-forward neural network). The downfall of this method is that the early neurons are poor feature detectors
and can lead to a larger network than a typical feed-forward neural network. Casper addresses this issue by allowing
previous weights to be modified but at a much smaller rate. This means Casper has the benefit of having a reduced
number of hidden neurons but without the disadvantage of having a larger network. 

This report will implement the Casper algorithm as outlined in the paper by Treadgold and Gedeon (n.d.) and apply pre-
processing techniques, namely channel and feature selection to determine its affect on the accuracy of the model. This is
because it has been shown that irrelevant features reduce performance (Kohavi and John, 1997) in addition to increasing
computational complexity. The reduced set of channels (ie. an electrode) and the features of each of these channels (eg.
mean, min, max, etc), will be selected by using the variance of the data and by using a genetic algorithm. These reduced
features  and channels  will  then be fed to a Casper network as well  as  a regular  feed-forward neural  network and
compared  against  each  other  to  determine  the  effectiveness  of  Casper.  In  addition  to  this,  each  of  these  will  be
compared with a baseline Casper and feed-forward network with minimal pre-processing.



2   Method

2.1  Feed-forward neural network implementation

As a baseline comparison, a regular feed-forward neural network has been implemented. An arbitrary learning rate of
0.2 was used for this network as it resulted in a good balance of the network accuracies and the training time. The
network consisted of a single hidden layer with the number of hidden neurons set to half the number of input neurons.
This was done to force the network to obtain a reduced representation of the features allowing it to generalize better. In
addition to this, it has the effect of reducing the training time as less computations are required. 

2.2  Casper implementation

The Casper Algorithm (Treadgold and Gedeon, n.d.) was implemented using the methods outlined in the paper by
Treadgold and Gedeon (n.d.). As the paper by Treadgold and Gedeon, n.d., did not specify the hyper-parameters, the
learning  rate  used  for  the  feed-forward  neural  network  was  used  for  L1 as  it  allows  for  a  better  and  more  fair
comparison. In addition to this, arbitrary learning rates of 0.005 for L2 and 0.001 for L3 was used. This was picked
through trial and error for the same reason the learning rate was chosen in Section 2.1; it strikes a balance between the
accuracies and training time. The paper by Galappaththi (2021) which implemented the same Casper algorithm, used a
P value of 4 and obtained excellent results. Due to this, the same P value will be used by Casper network discussed in
this paper. 

2.3  Basic pre-processing

Basic pre-processing was done on all datasets used in this experiment. The EEG data consists of 211 features and a
single binary label. One of these features is the subject number and as it is not a determining factor of whether an
individual is stressed or calm, that is you can swap around the subject numbers without the outcome changing, it was
excluded from all experiments conducted. This is further supported by the results of the paper written by  Irani et al.
(n.d.) which states physiological responses are the most reliable for stress detection and as the subject number is not an
indicator of a physiological response, it can simply be removed. 

2.4  Pre-processing using variance

As discussed above, irrelevant features can result in a decrease in the performance of a network. With this in mind, it
may be possible to reduce the number of channels and their features without having an impact on the performance,
potentially even increasing it. A paper investigating feature extraction and channel selection of EEG signals for seizure
diagnosis (2021), used the variation across channels to select three which best fit their purpose. The same concept can
be applied to the dataset of this experiment by calculating the variation of the average value of each channel (ie. the
mean feature of each channel) then picking the n most varied channels where n is found experimentally to produce the
best results. As per the paper written by Galappaththi (2021), n was set to 2 as it produced the best results. 

The features used for each channel can be reduced by using a similar concept. To accomplish this, all data must first be
grouped by the features, that is group the data by the mean, min, max, skw, etc then the variance of the data in each
group can be calculated to determine the m features with the largest variance. As per the same paper referenced above,
m was set to 13 as it produced the best results (in this paper k is used for the number of features).

2.5  Pre-processing using genetic algorithms

Following on from the goal in Section 2.4, a genetic algorithm could be used to select the channels and their respective
features rather  than simply using the variance. This is because using the variance may remove some channels and
features which are crucial for predicting the outcome accurately.

2.5.1 Encoding
To use genetic algorithms, the problem needs to be encoded as a chromosome which can then go through the process of
natural selection to arrive at an optimal solution. For this purpose, each channel and feature can be represented as a gene
with a binary allele which determines whether that channel/feature is included in the dataset used to train a network.
This means that each chromosome will have the structure shown in Figure 1.



Figure 1.  The encoding of a chromosome which represents the optimisation problem

Each generation will consist of fifty chromosomes and each will be used to produce a reduced dataset which will then
be passed through to a Casper network where it will train on this dataset and output a testing accuracy. K-fold cross
validation will be used to run the Casper network k times where the testing accuracy from each run is used to obtain an
average fitness which is more representative of true performance of that genotype (a visualisation of this can be seen in
Figure 2). This is necessary due to the stochastic nature of the Casper network initialisation which can cause the same
chromosome to have varying accuracies. In addition to this, it is common place for experiments with less data (as is the
case with this experiment) because it shows general performance. 

In an ideal world, the k value will be large however due to computational limitations, k was chosen to be 15 as it
resulted in each generation taking  roughly two minutes to evaluate the average fitness of each generation. This was
enough of  a  balance  between  obtaining a  general  testing  accuracy  and  time taken  to  train the  underlying  Casper
networks.

Figure 2.  The process of obtaining the average fitness for each genotype of each generation

2.5.2 Fitness function
As the purpose of this network is to obtain a feature set which can generalise well, the minimum testing accuracy
obtained across the k Casper networks is used as the fitness function. This will mean the algorithm will optimise to
increase the minimum performance and with enough time this will theoretically yield to a population where at their
worst a respectable accuracy is still obtained. Using the average was also considered but due to the point mentioned
before, the minimum was used instead.

2.5.3 Generation progression
The algorithm is initialised with a random population of size fifty. This was chosen as a paper which utilised genetic
algorithms to optimise the horizontal axis of a wind turbine (Pourrajabian, Dehghan and Rahgozar, 2021) found that a
smaller population combined with a larger  number of  generations,  speeds up the convergence rate.  Due to this,  a
population size of fifty (rather than 100 or 200) with a larger number of generations such as the 83 used in this paper,
would be optimal for this purpose. Once the population has been initialised, the average fitness value of the generation
will be calculated as explained in Section 2.5.1.



Once the average fitness value has been calculated for each genotype, a subset of the population will be discarded based
on its  average  fitness  value  and  the  pass  through rate (arbitrarily  chosen  to  be  0.8 for  this  case).  The remaining
population will reproduce to create children using uniform crossover to replace those that were discarded. Uniform
crossover (where each gene is selected randomly from one of the parents) was used as it means that there can be more
of a variation across the chromosomes compared to other forms of crossover. In addition to this, a paper written by
Pourrajabian, Dehghan and Rahgozar (2021) has discovered that it “could improve the convergence rate of the binary
genetic algorithm”.

For each child that is produced, it has a chance of obtaining a mutation based on the mutation rate  (arbitrarily chosen to
be  0.01  for  this  purpose) which  will  further  increase  the  variation  across  the  chromosomes  which  can  lead  to
discovering superior genes faster. This is especially useful after a few generations where the gene pool is very similar
where the mutation can discover a gene which helps overcome the diminishing performance of future generations.

3   Results and Discussion

3.1  Casper vs feed-forward neural network with basic pre-processing

A Casper network and a feed-forward neural network was trained with the basic pre-processing discussed in Section
2.3, that is almost all the data except for the subject number was used for predictions. The results of both networks can
be seen in Table 1 below

Table 1.  Performance of Casper and a feed-forward neural network (FFNN) with 100 epochs and a P value of 4 over
150 trials (10 repeats of different 15-fold cross validation trials) using all channel and features

Network Mean Std Min Max
Hidden Neurons Casper 3.97 0.27 1 4

FFNN 105 0 105 105
Training Accuracy Casper 76.26 3.42 54.47 91.04

FFNN 54.30 11.06 50.00 100.00
Testing Accuracy Casper 48.70 12.16 22.22 80.00

FFNN 40.10 7.34 30.00 60.00

As expected both networks perform poorly due to the presence of many irrelevant features however, Casper performs
better than the feed-forward neural network in general. This is most likely due to Casper not having a limit on the
number of neurons allowed therefore it can continue training and extracting features to get a better score. As stated
previously, the number of hidden neurons in the feed-forward network is half the number of inputs. As the data consists
of 14 channels each with 15 features, it means the network had 210 inputs therefore 105 hidden neurons in its layer. 

3.2  Casper vs feed-forward neural network with channel and features selection via variance

As explained in Section 2.4, a different dataset was then used to evaluate the variance across the channels and the
features to reduce the dataset down to 2 channels and 13 features. The reduced dataset was then passed into Casper and
a feed-forward neural networks, the performance of which can be seen in Table 2 below.

Table 2.  Performance of Casper and a feed-forward neural network (FFNN) with 100 epochs and a P value of 4 using
2 channels each with 13 features run over 150 trials (10 repeats of different 15-fold cross validation trials)

Network Mean Std Min Max
Hidden Neurons Casper 3.99 0.11 3 4

FFNN 13 0 13 13
Training Accuracy Casper 71.90 4.49 60.00 80.07

FFNN 80.60 3.16 70.15 91.79
Testing Accuracy Casper 63.44 13.67 22.22 100.00

FFNN 72.49 13.55 33.33 100.00

Compared to Casper with basic pre-processing, the data above shows a decrease of 6% in the training accuracy and an
increase of 30% in the testing accuracy. An increase of 48% in the training accuracy and 81% in the testing accuracy



can be seen for the feed-forward neural network when compared to the same network with basic pre-processing. There
is a performance increase in both models which further shows that irrelevant features are detrimental to a network’s
performance. It can also be seen that  the feed-forward neural  network performs much better than Casper with this
reduced dataset as it has a testing accuracy that is 14% better than Casper. This suggests that Casper may not be suitable
for this dataset however it could be due to many factors. Firstly, Casper has more hyper-parameters than the feed-
forward neural network therefore it is possible that the current hyper-parameters (P value, L1 rate, L2 rate and L3 rate)
are sub-optimal. In addition to this, even though both networks have the same number of epochs for training, Casper’s
accuracy drops significantly after a new neuron is added therefore it is at a slight disadvantage specially if training is
stopped directly after a new neuron has been added. 

3.3  Casper vs feed-forward neural network with channel and features selection via a genetic algorithm

As explained in Section 2.5, a genetic algorithm was designed find the optimal channels and features which results in a
high testing accuracy. The channels and features determined by this algorithm was then used to reduce yet another
dataset which was passed into a Casper and a feed-forward neural network and its results can be seen in Table 3 below.

Table 3.  Performance of Casper and a feed-forward neural network (FFNN) with 100 epochs and a P value of 4 using
5 channels each with 8 features run over 150 trials (10 repeats of different 15-fold cross validation trials)

Network Mean Std Min Max
Hidden Neurons Casper 4 0 4 4

FFNN 20 0 20 20
Training Accuracy Casper 76.19 3.46 68.15 93.28

FFNN 55.22 12.03 50.00 100.00
Testing Accuracy Casper 48.84 11.94 22.22 80.00

FFNN 40.61 8.30 22.22 70.00

Compared to Casper with channel and feature selection using variance, the data above shows an increase of 6% in the
training accuracy but a decrease of 23% in the testing accuracy.  In contrast,  the feed-forward neural  network saw
decrease of 31% in the training accuracy and 44% in the testing accuracy. In fact, the accuracies obtained using the
genetic algorithm only performs slightly better than the version which only performed basic pre-processing. As Section
3.2 has shown that a reduced dataset can lead to a significant increase in performance, this suggests that the genetic
algorithm is ill-suited for this purpose. However, there is no reason why in theory, the genetic algorithm cannot match
or surpass the results obtained in Section 3.2 as the algorithm would eventually obtain the same set of channels and
features used in that section. The poor performance of the genetic algorithm could be due to a range of factors. Firstly,
the number of generations used may not be enough to converge to a good result or the number of times, k, the Casper
network was re-trained may not be enough to obtain an accurate representation of the general  performance of that
genotype. Secondly, it may be that the pass through rate (ie. the number of genotypes which continues on to the next
generation), is too high or too low which means not enough of a variance is introduced or too much of a variance is
introduced which is negatively impacting the gene pool. Finally, the fitness function may be a very poor indicator of the
performance of that genotype as it only looks at the testing accuracy and disregards the training accuracy and other
factors. 

It is important to note here that Casper outperforms the feed-forward neural network. This suggests that the Casper
network could prove to be effective given the right hyper-parameters and a dataset which has all the irrelevant features
removed.

5   Conclusion and Future work

Although Casper performed worse using the reduced dataset  via variance, it  out-performed the feed-forward neural
network in all other runs. However, the accuracy of Casper is far from optimal as the highest testing accuracy obtained
is 63% which is almost equivalent to guessing. As the network does show improvements with some pre-processing, it
has potential and could potentially be very effective given an optimally reduced dataset. 

There are many ways in which this model could be improved. Firstly, the Casper model itself could be improved by
utilising a different loss function such as Adam which appears to be one of the best  modern optimisers.  Using an
activation and loss function which is more prevalent in modern applications may also yeild better results which could



potentially allow this network to obtain a much higher testing accuracy whilst maintaining a relatively high training
accuracy. In addition to this, another genetic algorithm could be used to determine the hyper-parameters of Casper, the
P value and the L1, L2 and L3 learning rates. 

Secondly, it is clear that the genetic algorithm used to obtain a reduced dataset has not been configured correctly, that is
the current hyper-parameters are not well suited for its purpose. To improve this, the network could be run for longer
(ie. increase the number of generations) and with a higher mutation probability to allow for more of a variance which
could lead to better performing genes. Following on, the pass through rate could also be decreased to allow for more
children with varying genes which could increase the speed of convergence. It is important to note however, that this
may also reduce performance as the children may end up disrupting the existing gene pool. A larger k value could also
be used as it would result in a fitness value which is more representative of the genotype. In addition to this, the fitness
function could also be changed to use the median value rather than the minimum and average as it could better represent
the performance of the genotype. A feed-forward neural network may work better to obtain the reduced dataset which
can then be fed into a Casper network to potentially obtain better results. Finally, a different crossover method may also
improve performance as uniform crossover may be changing too many of the good genes.
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