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Abstract. This paper creates a backpropagation trained BDNN (Bidirectional Neural Network) to predict the status of 

a patient given the target’s temperatures, blood pressure and nausea level. It illustrates methods of creating bijection 

between input and output instances for model construction and shows how BDNN is implemented in a classification 

problem. The paper then investigates the potential improvements to BDNN including hyperparameters optimization 

using genetic algorithm. It later investigates input neurons pruning and compares BDNN with baseline multiclass 

classification neural network, where it deduces the suitable situation to apply BDNN. Lastly the paper discusses 

potential retrievable data knowledge from the BDNN model. 
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1   Introduction 

The Bidirectional Neural Network is an intuitive structure from the neural science since the synaptic transmission can 

be either electrical or chemical and where it is electrical the transmission is usually bidirectional [1]. It enables the model 

to remember both the input patterns and output vectors as associative memories and can extract meaning from the trained 

neural networks, which is seen to improve the acceptability of neural networks [2]. The training of the model iterates 

between training from inputs to outputs and training inversely with weights in both directions remained the same waiting 

for update. Therefore, this structure requires a one-to-one mapping between inputs and outputs as otherwise the inverse 

training is impossible. The construction of such bijective correspondence is one of the main challenges of BDNN and 

several methods confronting this have been discussed by Nejad and Gedeon [1]. This paper will implement one of them 

and discuss the others. 

Once a BDNN classification model is created, we will further optimize hyperparameters using genetic algorithm to 

have an optimal model. After that, we will investigate input neurons pruning and from that deduce the suitable situation 

for using BDNN for classification. 

Due to the association of inputs and outputs, it is natural to believe that BDNN would have insight of the data 

representation and can be used to retrieve missing input data. Details of such feature will be investigated later in the paper. 

1.1   Dataset 

The dataset used in this paper is from B.S. Mendis et al.’s Investigation of Aggregation in Fuzzy Signatures Paper [3]. It 

includes four sub datasets from normal people and patients suffering from SARS, High Blood Pressure and Pneumonia 

with each dataset recording the target’s temperatures over time, systolic and diastolic blood pressure and nausea levels. 

The goal is to predict the status of a patient (Normal, SARS, HighBP, Pneumonia) based on his medical information (23 

patterns) recorded in the dataset. In this manner, the problem could be treated as a classification problem. 

The later part of the paper will also discuss pruning of certain input patterns at the minimal sacrifice of the accuracy of 

the model. 

 

Table 1.  Snapshot of the Raw Data. 

Temp 8am 

 

 

 

 

 

 

… 

Temp 8pm BP Systolic BP Diastolic Nausea Abdominal Pain 

Slight Mod High Slight Mod High Slight Med High Slight Med High Slight Med High No Yes 

0.1013 0.929 0.842 0 0.6884 0.8575 0 0.7626 0.8238 0.0352 0.8114 0.6855 0.0652 0.5279 0.8177 0 0.9594 

0.8827 0.1286 0 0.8639 0.152 0 0.9144 0.0285 0 0.9047 0.0287 0 1 0 0 1 0 

1 0 0 1 0 0 0 0.2427 0.8081 0 0.2431 0.9252 1 0 0 1 0 

0.0827 0.8573 0.8759 0.0639 0.904 0.8846 1 0 0 1 0 0 1 0 0 1 0 

 



2   Model Methodology and Design 

This section covers the preprocessing of dataset, BDNN classification model construction (including methods of creating 

a one-to-one mapping between input and output, classification strategy and training) and measurement. 

2.1   Data Preprocessing 

The given datasets are separated with each file representing a unique label. Therefore, the priority is to attach labels to 

the data before concatenation. Each dataset was read as a dataframe and four medical conditions ‘SARS’, ‘Normal’, 

‘HighBP’, ‘Pneumonia’ were encoded as labels 0,1,2,3 and attached to the dataframe. The four dataframes were then 

concatenated and shuffled to be random. After tweaking the data to meet the one-to-one mapping criterion of inputs and 

outputs (covered in next part), 80% of the data was separated as training data with the remaining being the testing data. 

Inputs and outputs were further separated accordingly. 

2.2   BDNN Construction 

The construction of BDNN is an extension to the normal neural network: the network is invertible, meaning it not only 

predicts the corresponding label from the medical data but also retrieves the medical data given the label. Therefore, there 

is a bijection between input and output instances. However, since the classification is a many-to-one problem, such one-

to-one mapping must be manually constructed. 

        

2.2.1 One-to-one Mapping 

Two major techniques for generating one-to-one mapping between input and output instances have been discussed by 

Nejad and Gedeon [1]: 1. Adding an extra node to the output instances; 2. Subclassification of the input patterns which 

is similar to a common technique used in Fuzzy Input Patterns [4]. For the simplicity of understanding BDNN, the first 

method is used. 

A natural way of creating an extra node is taking the mean value of all features in the input instance. However, since all 

values in the input data are between 0 and 1, there are duplicates among such extra nodes. Therefore, we cannot guarantee 

the bijection between input instances and (label, extra_node) outputs. 

A solution was enlightened by the L2-distance between each input instance 𝑣𝑖  and mean of all input instances �̅� . 

Moreover, to guarantee the uniqueness (thus bijection), from the experiments, instead of taking √∑ ((𝑣𝑖)𝑗 − �̅�𝑗)223
𝑗=1 , we 

use 𝑒𝑥𝑡𝑟𝑎_𝑛𝑜𝑑𝑒𝑖 =
1

23
∑ ((𝑣𝑖)𝑗 − �̅�𝑗)223

𝑗=1 . In this way (label, extra_node) results in 4000 different output instances. Since 

there are 4000 different input instances, a one-to-one mapping is formed. 

2.2.2 Network Layout 

Once a bijection is formed between input and output instances, we could construct the network. For simplicity, only one 

hidden layer is used (for now). A function is created to notate weights 𝑊𝑖ℎ (wights on input hidden neurons) as 𝑊𝑜ℎ 

(weights on output hidden neurons) in the inverse network (and notate 𝑊𝑜ℎ as 𝑊𝑖ℎ) as shown in the above picture. A 

basic neural network structure is made and then called twice with input dimension and output dimension swapped to have 

a pair of neural networks with inverse directions. The realization of BDNN is completed during the training process. 

2.2.3 Training 



With the one-to-one mapping between input instances and (label, extra_node) output instances, the classification problem 

could be transformed to a regression problem with multiple neurons on both ends. During one epoch of training, 

backpropagation is applied in both forward and reverse direction with the weight re-notating function called. Since the 

network model is inversive regression, we use the same optimizer for both forward and backward directions. The choice 

for such optimizer will be investigated with its hyperparameters in the next chapter. The loss functions are set to MSE 

which is an L2 norm error usually used for regression. 

2.3   Measurement 

As our focus is classification, only the forward direction (from medical data to (label, extra_node)) will be measured. 

Also, since extra_node is used mainly for bijection construction, we are more concerned about the label (the extra_node 

has its own usage which will be discussed later). Since the model is treated as a regression, the label is treated as a floating 

number. Therefore, for accuracy, the result will be considered accurate if the predicted label value falls into a range around 

the real integer label. The allowed range is set to ±0.5 (exclusive) for this specific model which is equivalent to the 

‘nearest integer’. The loss of the prediction is made by the MSE error between predicted (label, extra_node) and the real 

value. The code of accuracy measurement could be seen in the supporting document. 

3   Hyperparameters Optimization with Genetic Algorithm 

This section first gives a unoptimized BDNN model. It then investigates the selection of optimizers with corresponding 

hyperparameters like learning rate and momentum. The hyperparameters optimization used here is deduced from genetic 

algorithm. 

3.1   Initial Model 

We first selected SGD (Stochastic Gradient Descent) with learning rate set to 0.01 and momentum set to 0.9. The number 

of hidden neurons was first set to 20. The accuracy and loss for both training and testing data during the 300 training 

epochs (each epoch includes backpropagations on both directions) are shown in Fig. 1. 

 
Figure. 1. optimizer=SGD (1r=0.01, momentum=0.9) #hidden_neuron=20 

 

 

 

Epoch Testing Accuracy Testing Loss 

100 0.25% 0.2723 

150 31.59% 0.1789 

200 67.79% 0.1065 

250 100% 0.0514 

300 100% 0.0204 

Table. 2. Testing Accuracy & Loss 

 



As can be seen from the figure and the table, the training of the model with current hyperparameters converges after 250 

epochs, which is relatively slow. Also, in the first 100 epochs, the loss oscillates severely, and the accuracy often gets 

stuck. This is most likely because the optimizer focuses more on the extra_node in the early stage due to the poor choice 

of hyperparameters. For the training process to converge faster, hyperparameters in SGD will be optimized using genetic 

algorithm. 

3.2   Genetic Algorithm Hyperparameters Optimization 

3.2.1 Differential Evolution Algorithm 

Evolutionary Algorithms, inspired by the natural evolution of species, have been successfully applied to solve numerous 

optimization problems in diverse fields.[8] The specific genetic algorithm used here is a variation of differential evolution 

algorithm introduced in [8], where parameters are equivalent to genes in biological systems. A population is formed by 

vectors with each representing a distinct set of parameters. Different combinations of parameters result in different fitness 

values for a vector. A vector with a higher fitness outlives others and will pass its features to further generation via 

mutation. 

Differential evolution algorithm can be implemented as an iterative process. Generalized steps for our specific model are 

given below: 

 

1. Initialization: generate an initial population with N vectors filled with randomized hyperparameters’ values 

[ℎ𝑝1
1, ℎ𝑝2

1, … , ℎ𝑝𝑛
1], [ℎ𝑝1

2, ℎ𝑝2
2, … , ℎ𝑝𝑛

2], … , [ℎ𝑝1
𝑁 , ℎ𝑝2

𝑁 , … , ℎ𝑝𝑛
𝑁] 

2. Initial evaluation: calculate the scores of BDNN model (here we use test accuracy) for each vector of 

hyperparameter values. Retrieve the best score and the corresponding vector. 

3. While population converges: 

For each hyperparameter ℎ𝑝𝑗
𝑖  in each vector: 

 Generates a random number 𝑟𝑎𝑛𝑑 ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

If 𝑟𝑎𝑛𝑑 < 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒: 

  Mutation: ℎ𝑝𝑗
𝑖 = ℎ𝑝𝑗

𝑏𝑒𝑠𝑡 + 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 ∗ (ℎ𝑝𝑗
𝑟𝑎𝑛𝑑𝑜𝑚1 − ℎ𝑝𝑗

𝑟𝑎𝑛𝑑𝑜𝑚2) 

 Else: 

  ℎ𝑝𝑗
𝑖 = ℎ𝑝𝑗

𝑖  

Calculate the scores for the new population, retrieve the new best score with corresponding vector. 

 

With this algorithm, hyperparameters that result in a higher accuracy will pass to the next generation (with probability 

recombination_rate) in the form of mutant. Through evolution, the future generation will converge to an optimal solution. 

3.2.2 SGD Hyperparameter Optimization 

There are several details for the implementation of the differential evolution algorithm given above: 1. The number of 

epochs is limited to 100 as we seek faster convergence; 2. In order to get a simpler model, the number of hidden neurons 

is set to 10; 3. The hyperparameters in SGD for optimizing are the learning rate and momentum; 4. Initialization of 

population (a set of combinations of hyperparameters) is made by randomization where learning rate follows an 

exponential distribution with 
1

𝜆
= 10  and momentum follows a uniform distribution in (0,1);  5. The population 

convergence is determined by MSE of the population; 6. Population size was set to 10, recombination rate was set to 0.7 

and mutation rate was set to 0.5. 

From the genetic algorithm, an optimal solution was found as (learning_rate=0.3, momentum=0.06). As can be seen from 

Fig. 2, the training converges much faster (after epoch 75) than the previous (epoch 250) and the final accuracy of BDNN 

model is also 100%. 



 
Figure. 2. optimizer=SGD (1r=0.3, momentum=0.06) #hidden_neuron=10 

3.2.3 Limitation of Differential Evolution Algorithm 

Another hyperparameter worth investigating is the number of hidden layers. We have tried to use differential evolution 

algorithm to optimize this hyperparameter together with the learning rate and momentum, where the mutation for the 

number of hidden neurons is projected to a nearest integer. The result was poor. A possible reason is that for integer 

parameters, the mutation in differential algorithm hardly preserves the feature from the previous fittest hyperparameter, 

and projecting to a nearest integer further enlarges such problem. Therefore, we could conclude that differential evolution 

algorithm is better suited for floating hyperparameters, and it will be even better if those hyperparameters are completely 

continuous. 

A more compatible genetic algorithm for hyperparameters optimization will be left for future investigation. 

3.3 Adam 

While the learning rate in SGD could be optimized for faster convergence, it has an equivalent type of effect for all the 

weights/parameters of the model, which is not quite ideal. An alternative is using adaptive learning rate per parameter. 

One commonly used optimizer with such feature is Adam (Adaptive Moment Estimation). Adam is an algorithm for first-

order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments 

[5]. Parameters that would ordinarily receive smaller or less frequent updates receive larger updates with Adam (the 

reverse is also true). Therefore, it speeds up the training. 

However, due to the fast speed of Adam, for the current model with given data, Adam could easily skip the optimal 

solution. If we reduce its learning rate, the number of epochs will be sacrificed. With a balance between learning rate and 

number of epochs hard to achieve, Adam fails to show advantage over SGD under the current structure. However, it will 

have usage in the next section. 

4   Further Investigation 

4.1 Input Neurons Pruning 

Due to the association between input and output, a potential advantage of BDNN is to allow fewer input neurons. The 

experiment was carried by using only the ‘temperature over time’ data as input to predict the label. With fewer input 

neurons, the training is expected to be harder to converge. Therefore, Adam is preferred here. With a relatively high 

learning rate 0.04 for Adam, the training still took many more epochs to converge (430 epochs), with a converged model 

having test accuracy only around 90%, which is significantly lower than before. 



 

Fig. 3. optimizer=Adam (1r=0.04) #hidden_layers=1 #hidden_neuron=10 #input_neurons=12 

4.2 Input Neurons Pruning with Multiple Layers 

A potential strategy to resist the effect of fewer input neurons is increasing the number of hidden layers. The experiment 

was carried based on the above case where the learning rate remained the same. Two hidden layers were used in this case 

with corresponding numbers of hidden neurons being 8 and 4. Weights on hidden neurons were swapped properly during 

training. The BDNN model now converges much faster during training (100 epochs) with a greatly improved testing 

accuracy at 99%. 

 

Fig. 4. optimizer=Adam (1r=0.04) #hidden_layers=2 #hidden_neuron=8,4 #input_neurons=12 

4.3   Comparison with Baseline Classification Neuron Network 

The Baseline Multiclass Classification Neuron Network is an extension to the normal Binary Classification Neural 

Network with input being the data features and output being a 4-element-vector for softmaxing and choosing the index 

of maximum. 

There are 2 sets of comparisons between BDNN and Baseline Multiclass Classification. 



  
Fig. 5. Baseline with full input neuron   Fig. 6. Baseline with pruned input neurons 

optimizer=Adam (1r=0.01) #hidden_neuron=10  optimizer=Adam (1r=0.04) #hidden_neuron=10 

 

 

The first comparison is based on the same input condition as 3.2.2 where the input is complete. From the comparison 

between Fig. 2 and Fig. 5, it can be deduced that for the simple classification issue BDNN suffers from low training 

efficiency due to its multiple learning which is like the problem of bidirectional associative memory [6]. 

The second comparison is based on the same condition as 4.2 where several neurons of input are pruned. From the 

comparison between Fig. 4 (training converges around epoch 100 with test accuracy 99%) and Fig. 6 (training converges 

around epoch 150 with test accuracy 100%), it can be deduced that when the input patterns are missing critical 

information, BDNN with multiple layers could perform as good as, or even better than the Baseline Multiclass 

Classification Neuron Network due to its ability to establish an association between input patterns and output vectors thus 

having an intuition of the data relation. 

4.4   Missing Data Retrieval 

BDNN could be used for assigning the most likely value for an unknown data. This characteristic could be illustrated in 

the following example where the first line of data in Table 1 will be used: 

This piece of data belongs to a SARS patient. Suppose the Nausea-High value 0.8177 (the 21st column) is missing. Back-

engineering could be performed once the method of generating extra_node is checked. In this paper’s model, the 

generation of the extra_node is shown in 2.2: 𝑒𝑥𝑡𝑟𝑎_𝑛𝑜𝑑𝑒𝑖 =
1

23
∑ ((𝑣𝑖)𝑗 − �̅�𝑗)223

𝑗=1  where �̅�  is a known value. 

Therefore, extra_node for this line could be approximated by following the same formula except ignoring the missing 

entry, i.e., 𝑒𝑥𝑡𝑟𝑎_𝑛𝑜𝑑𝑒 =
1

22
(∑ (𝑣𝑗 − �̅�𝑗)

220
𝑗=1 + ∑ (𝑣𝑗 − �̅�𝑗)223

𝑗=22 ) in this input. 

Since the label of this piece of data is also known, with the pair (label, extra_node), the original full data could be 

approximated by the inverse direction network and the missing value could therefore be approximated. 

Due to the relatively poor structure from output to input in this model, the approximated missing value is 0.77. While not 

quite accurate, it could still be considered as a plausible guess. 

For a better structured BDNN model, the value assigned would be more accurate. This will be further investigated in the 

future work. 

5   Conclusion and Future Work 

BDNN is a useful neural network with the potential of showing the relation between patterns. It can be used for 

classification problems especially when the given data is incomplete. This paper has shown a step-by-step implementation 

of BDNN with optimizations and analysis on extreme situations. 

Genetic algorithm, like BDNN, is also bio-inspired. It preserves characteristics of parameters that contribute to the model 

by passing them to next generations via mutation. Therefore, it could be used for optimization. This paper has shown an 

implementation of using one of the genetic algorithms to perform hyperparameters optimization for a neural network 

model.  



5.1   Limitations 

This paper focused on the adding extra node method to generate a one-to-one mapping between input and output instances. 

Compared to subclassification of the input patterns method, this method is comprehensive and easy to implement with 

the cardinal principles of BDNN preserved. However, such method has its limitations. The added extra_node, especially 

for our dataset, does not reflect much useful information of the data. Therefore, the model gives little information in the 

backward direction and is unable to be trained as cluster center finders. 

The Differential Evolution algorithm used for hyperparameters optimization in this paper also has its limits. The mutation 

method restricts that the algorithm is only suitable for floating number whereas integer hyperparameters like number of 

hidden neurons and number of hidden layers cannot be optimized by this genetic algorithm. 

5.2   Future Work 

The future work involves investigating subclassification of the input patterns as preparation of BDNN. The BDNN model 

using subclassification of input patterns could be experimented on this paper’s dataset since the structure of this dataset 

is close to SFM (Gedeon and Turner’s Student Final Marks [7]). Also, with that model, more features of BDNN could be 

explored and generalized. 

Another potential future work given this dataset is to use fuzzy signatures as hidden neurons for a classification neural 

network as patients’ medical data is recorded as fuzzy values in our dataset. 

Furthermore, more genetic algorithms will also be learned for a hyperparameters optimizer with better compatibility. 
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