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Abstract. Neural network classifiers often use large datasets and layers with many units. Training a neural network 

with many parameters can be computationally expensive and can negatively affect model performance. This paper 

demonstrates how evolutionary algorithms can be used to select useful features for neural network classifiers, thereby 

discarding irrelevant input features and producing a classifier that is less computationally expensive to deploy, using a 

stress classification network as an example. 

1 Introduction 

Human brain wave readings from thermal electroencephalographic (EEG) sensors can be used to predict whether a person 

is calm or stressed using artificial neural network models. Using all the thermal-eeg headset sensor readings (and their 

statistical parameters) to make classifications requires a large input vector, which can negatively affect model 

performance and lead to longer computation times[1]. This report aims to describe an artificial neural network used to 

predict human stress levels accurately using a sequential feed forward network, and an extended set of compression 

techniques including a genetic-based algorithm for feature selection. This is an example of how a genetic algorithm can 

be used to produce optimal model parameters without having to compromise computational time. 

1.1 Background 

This report is an extension of my previous model and technique to preserve functionality in a neural network compressed 

based on the hidden units’ distinctiveness. This itself is based mostly on T.D. Gedeon and D. Harris’ approach described 

in Progressive Image Compression[2]. The technique is developed on a model with the same thermal-eeg dataset and the 

same classification goal. I compressed the hidden layer of a three-layer feed forward network by constructing a set of 

vectors with the number of training patterns as its size, each vector includes values equal to the activation of one hidden 

neuron for each training pattern. Each vector corresponds to one unique hidden neuron, and each hidden neuron’s 

activations are encoded into one vector. My previous model uses a K-means clustering algorithm to describe each hidden 

unit’s “distinctiveness” from each other based on the calculation of the angle between them in the input pattern space. 

 

My extended technique includes the distinctiveness-based compression technique, but also aims to reduce the number of 

features required to train an accurate model. Achieving this by brute-force (i.e., by training a network on every possible 

set of input features) is not computationally feasible. 

1.2 Proposed technique 

My extended model uses an evolutionary or genetic based algorithm to select the optimal features to be used as input in 

the calm/stress classification problem. Each model is encoded in a “chromosome” representing which features are 

included as input. A set or population of chromosomes are evaluated based upon their model’s performance on classifying 

data in a test set. This produces a testing accuracy or fitness which determines how likely a chromosome is to reproduce, 

i.e. have features that determine the chromosomes of a more optimised population, or a generation. Each chromosome is 

also affected by mutation, or a small, random variation in its binary encoding. After a set number of generations, with a 

set number of chromosomes in each population, I aim to produce a population of chromosomes that converge to a model 

with an optimal set of input features. 

1.3 Dataset 

This paper reports on the thermal_eeg (version 1) dataset. Each data pattern is a summary of time-series data recording a 

participant’s electrical brain activity while watching either a calming or stress-inducing video. The features (columns) in 

the dataset are statistical measures of the mean, minimum, maximum, standard deviation, variance, interquartile range, 

skewness, root mean square, summation, hjorth parameter, hurst exponent, mean of first signal difference, mean of second 

signal difference, approximate entropy and fuzzy entropy of each of the headset’s fourteen channels’ signal readings over 

each time series. 
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2 Method 

2.1 Evolutionary algorithms for feature selection 

Evolutionary algorithms are optimisation algorithms that mimic biological evolution by evaluating a set of solutions based 

on their fitness, or ability to solve a problem effectively. Solutions that meet a fitness criterion have a higher chance of 

being selected as parents that determine the characteristics of the next generation of potential chromosomes. Each new 

chromosome in a successive generation are randomly altered (mutated) by a small factor, to encourage a more diverse set 

of solutions in each generation. After several hundred generations, chromosomes that represent poor solutions are 

eliminated due to having a low fitness and a low chance of reproducing. Chromosomes that represent strong solutions 

ideally converge, and each chromosome in a final generation should encode a set of features that produce network model 

with high accuracy[3]. A flowchart representing this process is provided below. 

2.1.1 Initialisation 

Chromosomes are initialised as a vector of random bits of length 210. Each 

element represents the ith input feature of the dataset. Chromosomes values 

of 1 indicates an input feature that is included in the model, and values of 0 

indicate input features that are not included in the model. In my program, 

200 chromosomes are included in every generation is stored in a matrix with 

200 rows and 210 columns. 

2.1.2 Evaluation 

Chromosomes are evaluated upon their performance in a feed-forward 

classifier neural network with one hidden layer. One network is created for 

each chromosome and has an input size equal to the number of 1 bits in the 

chromosome. The hidden layer has a size equal to 66% of the number of 

input features (rounded down to the closest integer). Each network has two 

output units for each prediction class (calm, stress). 

The network uses a Cross Entropy Loss function to evaluate how close 

predictions are to the real classes that input patterns represent. A stochastic 

gradient descent optimiser is used to alter weights and biases to an 

approximate solution with a learning rate of 0.3. Units in the hidden layer 

use the Softplus activation function (with a limit of 1 million). 

 

Each network is trained on a dataset 66% the size of the original 

thermal_eeg dataset. Since the dataset is quite small, no batches are 

necessary during training. To save computation time, each network trains 

on no more than four epochs. Due to the small size of the dataset, networks generally overfit the training data at around 

epoch two, and the state of the network is saved as an optimal model at whichever epoch trains a network with the lowest 

testing loss. The testing accuracy of each chromosome’s network is saved as the fitness value of that chromosome. 

2.1.3 Crossover 

Crossover is analogous to biological reproduction, where the fittest individuals in a population determine the traits of the 

following generation. The chance of a chromosome reproducing are determined by their individual fitness as a percentage 

of the summation of all chromosomes’ fitnesses. Each chromosome is sorted into a probability distribution array of size 

200 (the number of chromosomes in each generation), where each element is the index of a chromosome in the parent 

generation. In my program, a bias is applied such that fitter chromosomes are more highly represented in the probability 

distribution than their fitness proportion would determine. Parent chromosomes are selected randomly from the 

distribution. The number of elements corresponding to any chromosome is proportional to their fitness, so that they have 

a higher chance of being selected as parents to the next generation. 

 

Fig 2.1 logic flow of evolutionary 

algorithm 
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Crossover is applied by creating an offspring chromosome where each gene is randomly selected from parent A or parent 

B, randomly selected from the chromosome probability distribution. This is a process called uniform crossover. This 

process is repeated for each new chromosome, resulting in a new population that combine the better traits of the previous 

generation. 

2.1.4 Mutation 

Mutation introduces further diversity to each generation of new offspring chromosomes. Mutation occurs by inverting 

bits in a chromosome such that a previously activated feature is disabled, and a previously activated feature is disabled. 

The number of bits mutated in a chromosome is determined by the mutation probability (set to 5%). 

2.1.5 Termination 

In my program, new generations keep being produced until 400 generations have passed. Over the whole evolutionary 

process, any chromosome that produces a model with a higher testing accuracy than the current best model is selected as 

the best model. Once the evolutionary algorithm terminates, the best performing model and its testing accuracy is reported 

in the terminal output. The original distinctiveness-based compression technique is then applied to the hidden layer, 

reducing the hidden layer to 70% of its original size. 

3 Results 

As a control measure, models produced by the evolutionary algorithm are compared to a networks with no compression. 

A control network is created with 210 input size, for each feature in the original dataset and a hidden size of 15 0 units. 

All other hyperparameters of the control network are identical to those used in the evolutionary algorithm.  A total of 

eighty thousand (equal to the product of the number of generations and chromosomes) control models were constructed, 

and the testing accuracy of the best performing model in each 200 iterations (analogous to generations) were recorded. 

 

In comparison to the control models, the best models in each generation’s chromosomal models had slightly smaller 

testing accuracies. The mean testing accuracy for the control 

models was 77.08%. The mean testing accuracy for the models 

with input features selected by evolutionary algorithms was 

73.01%. Further statistical parameters are summarised in figure 

3.1 and the distribution of test accuracies are summarised in 

figure 3.2 and 3.3. These results are consistent with the program 

being run multiple times, within a few percentages. 

3.1 Evaluation 

As discussed in my previous compression report, accurate 

models appear to be highly dependent on the randomly 

initialised weights and biases of a network. For this reason, 

multiple models trained on the thermal_eeg dataset with 

identical hyperparameters rarely converge to an optimal solution. Upwards of 10 models often need to be trained before 

a model with a testing accuracy over 70% is produced. Evolutionary algorithms are designed to find an approximation of 

the optimal solution, not the optimal solution itself. My program uses 400 generations to approximate a solution to the 

stress classification problem due to the physical limitations of the machine the program was tested on. Although the 

program produces positive results, with some chromosomes producing a  high-accuracy model, it is likely many good 

solutions are not detected in the selection process due to the random initialisation of weights and biases. A more optimal 

solution might be found if the program was run using many more generations. The parameter controlling the number of 

generations in my program is named num_generations and can be changed to any value. 

 

Chromosomes produced by the final generation of the evolutionary algorithm have an average of 107 features activated 

in the model they encode. This demonstrates that features selected using an evolutionary algorithm can produce a 

predictive stress model with equal test accuracy to a model with no feature selection. After distinctiveness-based 

compression is applied to the hidden layer, the models usually maintains its prior test accuracy, however occasionally 

Test accuracy ANN Control Evolutionary 

algorithm 

Mean (%) 77.40 72.89 

Min (%) 54.0 52.0 

Max (%) 90.0 90.0 

Standard 

deviation 

0.0671 0.0754 

Fig 3.1 Stress classification network results 
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loses accuracy by around 10%. The result of this combined compression technique on the highest performing model 

selected from the evolutionary cycle is a model with an input size approximately half that of a model with no compression 

and 210 input features. After applying distinctiveness-based compression, the hidden layer is reduced to 70% of its 

original size. The resulting compressed model has a testing accuracy usually above 90%, demonstrating that a stress-

prediction neural network can be significantly reduced in size using evolutionary algorithms and distinctiveness-based 

compression, while maintaining a high degree of accuracy. 

 

 

4 Conclusion 

My program demonstrates that evolutionary algorithms can be used to select features in a dataset that are useful for 

classification tasks. Evolutionary feature selection and distinctiveness-based compression can be used to reduce the size 

of a stress-classification network and achieve test accuracy that is at least as good as a network with no compression, 

resulting in a smaller network that is less computationally expensive to use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 Testing accuracy distribution on 

ANN models 

Fig 3.3 Testing accuracy distribution on evolutionary 

models 
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