
Improvement in Face-emotion Analysis replacing
CasPer with CNN

Ran Ji1

u6447167@anu.edu.au

Australian National University, Acton ACT 2601, AU

Abstract. The CasPer neural network and convolutional neural net-
work were proposed to the Static Facial Expressions in the Wild (SFEW)
dataset to analyse the connection between human facial features and the
emontion expressed from it. The CasPer networks were examined that it
had the tendency of making more accurate predictions and it generalises
better than CasCor networks. The CNN was compared to have better
performances than CasPer technique and it was believed that classifica-
tion with high accuracy could be made through CNN with the same level
of generality CasPer has.

Keywords: artificial neural network · face-emotion · deep learning .

1 Introduction

1.1 CasPer

The Cascade correlation algorithm [1] was proven to be useful in the construction
of artificial neural network. It contains a 2-phase training process which allows
random starting weights. The cascade architecture adds hidden units once at
a time and the learning algorithm install the weight of new hidden units with
maximized correlation between its output and the residual error of the whole
network while all weights of previous hidden neurons are frozen. Then, weights
connected with the output neurons are trained to minimize the loss after the
insertion of a new neuron. Both phases of training are ceased when the loss
stops decreasing. Recalculation of network values when a new neuron is inserted
is not neccesary for CasCor networks because of the freezing weights. Errors are
not back propogated since just one layer is involved in a step of training.

Dropbacks of CasCor networks are critical. The freezing weights would lead to
extremely large networks since early stages frozen neurons are much less detective
which might introduce additive errors. These extra tasks could be solved by later
layers added to teh network, but the training cost spent on them are enormous.
Also, it has appeared that the generality of CasCor, especially in regression and
classification problems.

The CasPer contains a modified RPROP algorithm [2] which uses individu-
alistic learning rate for every weight in gradient descent. The CasPer networks
are contructed similarly to the CasCor networks and RPROP takes places when



2 R. Ji

a hidden neuron is inserted. 3 subdivisions inside the network are assigned with
different initial learning rates. Layer 1, 2 and 3 cover the weights which are con-
necting the new neuron and previous hidden/input neurons, the output of new
neuron and the output neuron, the old hidden neurons and the input neurons,
respectively.

Fig. 1. The architecture of CasPer network - vertical lines sum up the inputs

The values inside each of the layers are set such that layer 1 has much larger
values than layer 2 does, and layer 2 has slightly larger values than layer 3 does.
New hidden neurons are considered more efficient to learn the network error
with higher layer 1 values and less likely to produce network error with slightly
higher layer 2 values.

To differ from the CasCor networks, CasPer does not introduce the freezing
steps. Changes will be applied on old weights if the algorithm regards them
benifical, but in a slower rate than the changes in weights connected to the
new neuron. Advantages of freezing are hence partially preserved while major
problems, namely saturation and poorly performing early stage neurons, are
removed. Weight decay is introduced in CasPer for better generalisation. After
the insertion of a new neuron, the weight decays proportionally to its magnitude
squared. Additionaly, the installation of new neurons occur when the rate of
decreasing in RMS error fall below a certain amount within a time period, which
is given by 15 + P * N [4]. N represents the nunmber of installed neurons and P
is a prior parameter. Casper network increases this period automatically as the
size of the network grows with more hidden layers.



Improvement in Face-emotion Analysis replacing CasPer with CNN 3

1.2 CNN

A Convolutionary Neural Network (CNN) is a type of space invariant artificial
neural networks based on the convolution kernels, which is proven as an useful
tool in many applicational fields of deep learning including image/video recog-
nition and classification, recommandation system, natural language processing
and more. The spatial independence feature ultimately ensures that the analy-
sis around facial emotion is completely irrelated to the position where the face
locates in an image. The most beneficial aspect of CNNs is reducing the number
of parameters in artificial neural networks [5], which has prompted developers to
approach larger models for solving sophisticated tasks that were once regarded
impossible with classic neural networks. A CNN usually contains an input layer,
and output layer and a bunch of hidden layers just as other neural networks do.
The hidden layers in CNN would at least involve one layer where a dot product of
the convolution kernel with its input matrix is performed, mostly the Frobenius
inner product, with an activation function, mosly the ReLU. The convolution
operation would generate a feature map contributing to the input of the next
layer. Following the convolutional layers are the other functional layers, namely
the pooling layers, fully connected layers or normalization layers.

Fig. 2. Typical CNN architecture

In convolutional layers, a feature map, also called the activation map, is
generated throught abstraction of the image. Hyperparameters that related to
this layer are: width and height of the convolutional kernels, the number of
channels and convolution operation parameters (padding, stride, dilation). In
pooling layers, either local or global, the outputs of neuron clusters are combined
into a single neuron at the next layer for the purpose of reducing dimensions of
data. Max or average pooling takes the maximum or mean value of each local
neuron cluster in the feature map. Fully connected layers work just as a typical
multi-layer perceptron neural network that each neuron in a layer is connected
to each neuron in another layer. It classifies the images from flattened matrices.
Receptive field ensures that each neuron only receives input from a limited region
in the previous layer, commonly a square region. A pyramid shaped structure
is built since each neuron in the previous layer has its own receptive field. This



4 R. Ji

architecture is extended in the neural abstraction pyramid [6] by lateral and
feedback connections.

1.3 Dataset and Tools

The recognition of human facial expressions became possible in recent years
due to the developments in advanced computer vision. Internal affective state,
intentions and communications could be reflected from changes in facial features.
It is highly valuable in various fields of industry, namely lie detection, human
behavior analysis, pain/stress/anxiety relief therapy, commercial promoting et
al. Datasets of facial expressions were built using camera captured human faces
and various deep leanring algorithms were proposed when it comes to analyze
them.

The dataset on where the CasPer algorithm was performed in this project is
the Static Facial Expressions in the Wild (SFEW) [3]. It contains unconstrained
human facial expressions extracted from movies which includes people of large
age range, various head poses, different resolutons and realistic illuminations.
SFEW has been developed by selecting frames from Acted Facial Expressions
in the Wild (AFEW) and accede its seven categories of expressions: angry, dis-
gust, fear, happy, sad, surprise and neural. The dataset on where the CNN was
performed is the source images, screenshots with human face, of SFEW.

The SFEW dataset was stored in .xlsx file using Microsoft Office. The SFEW
source dataset was stored in .png files. The project was encoded in Python. Pan-
das was used for loading data, OpenCv and TorchVision were used for image
reading and PyTorch was used for the implementation of CasPer and convolu-
tional neural network.

2 Method

2.1 CasPer

According to the structure of dataset, the input size was set to 10 and the
number of classes was set to 7. The batch size was set to 128 considering a total
size of 675 points. Values inside the dataset were loaded and stored in a padas
dataframe. It was later normalized by applying the z-score method. This method
is calculated by subtracting the population mean from an individual raw score
and then dividing the difference by the population standard deviation. It was
further divided to a train subset and a test subset, which takes 80% and 20% of
the whole dataset respectively.

Layers of neurons were built and stored in seperate torch.nn.ModuleDict().
3 layers of CasPer network, as mentioned previously, were assigned to differ-
ent parameters as shown in table 1. Connections related to each of the layers
were stored in a customized CasperNet class which also introduced leaky ReLU
technique.



Improvement in Face-emotion Analysis replacing CasPer with CNN 5

Layer 1 Layer 2 Layer 3
learning rate 0.2 0.005 0.001

A customized torch dataset class was constructed with adding randomized
noises implemented. Additionaly, the weights were balanced with the utility of
WeightedRandomSampler from torch.utils.data.sampler due to the order differ-
ences among several dimensions. Cross entropy loss was introduced when mea-
suring the network error as it provides the distance from an estimated probability
distribution to the true distribution, which more precisly indicates the perfor-
mance of the network. Number of hidden layers was limited to prevent overfitting
and huge network depth. Time period limits were also accumulated to the epoch
limit in every loop.

K-fold method was later introduced for better stability of the CasPer neural
network. As k set to 10, the dataset was divided into 10 folds and one of the
folds would be selected as the validation set while others became the train set.
The learning process repeated 10 times such that each fold was validated by each
other 9.

2.2 CNN

The image files were loaded with OpenCv and TorchVision and a composation
of transformations were applied: resizing, grayscaling and normalizing with 0.5
mean and 0.5 STD. After grayscaling, single channel images were sent to a
PyTorch Tensor object and were histogram equalized then stored under a new
directory. A customized CNN class with leaky ReLU and kernel size of 5 was
constructed to store the neural network. The computing force of an individual
Graphic Processing Unit (GPU) would be detected and made to effort with
torch.device(). Otherwise, CPU would be activated as a backup plan. K-fold
technique was also introduced to examine the stablity with K equals 10. Cross
entropy loss method was introduced as it was in CasPer networks while Adadelta
replacing RMSProp was used in the optimizer with a learning rate of 0.1.

3 Result

Results for the CasPer neural network would be shown below. The epoch limit
was set as 1000 with a batch size of 128. When using default parameters of
RMSprop functions in the optimizer, the results were not satisfying as the test
accuracy reached 17.04% which was close to the accuracy of completely random
guesses. After monitering around the momentum and weight decay, the combi-
nation that would give a better result was found. As the momentum set to 0.9
and the weight decay set to 0.00001, due to the micro-scale order of original
data, the network was trained more properly. During training, we could see that
the accuracy rate grows as the number of hidden layer increases as shown in fig
2. It shall be noticed that the rate started decreasing at the tail which indicated
an overfitting occurs when the number of hidden layers were too high.



6 R. Ji

Fig. 3. accuracy against the number of hidden layers

The test accuracy was 28.35% which could be still considered as incomparable
to the results given by [3]. After applying the k-fold method, the peak test
accuracy reached 33.34% with the mean accuracy 25.06%, the median accuracy
24.62%. And the standard deviation of 10 accuracies was 5.67% which indicates
there was only around 1.5 standard deviation from the peak to the mean. This
showed that the CasPer network produced a relatively good generalization.

For the convolutional networks, the epoch limit was set as 30 with a batch
size of 64. It was discovered that the training accuracy reached over 99% after
mostly 22 epoches. The following table exhibits the test accuracy of the CNN
with various weight decaydences:

weight decay 0.0001 0.00001 0.00002 0
test acc (mean) 42.39 42.54 41.19 41.04
test acc (median) 42.54 41.79 42.54 40.30
test acc (STD) 5.43 5.09 5.09 4.02

It was clearly shown that the weight decay only has insignificant correlation
with the test accuracy which stabled around 42% after 10-fold cross validation.
It also indicated that CNN has a crucial advantage in classification of facial emo-
tions from images than the CasPer networks. The generality of CNN maintained
on the same level with CasPer neural networks.



Improvement in Face-emotion Analysis replacing CasPer with CNN 7

4 Conclusion

In the classification of facial expressions, the CasPer network successed to grant
more generality over the CasCor network and it shows the tendency of mak-
ing predictions based on the SFEW dataset. Experimentally, we found that the
number of hidden layers is positively related with the accuracy before it surpass
a certain limit. However, the test accuracy was not as satisfying as expected.
A better solution to the tasks would be convolutional neural network whose
performances were critically more satisfying with higher test accuracy and sim-
ilar generality. For further improvements, the inner structure of CNN could be
designed more carefully and other types of optimizer could be plugged in.

References

1. Fahlman, S.E., and Lebiere, C. (1990): The cascade-correlation learning architec-
ture. In Advances in Neural Information Processing II, Touretzky, Ed. San Marco,
CA: Morgan Kauffman, 1990, pp. 524-532.

2. Riedmfller, M. and Braun, H. (1993) A Direct Adaptive Method for Faster Back-
propagation Learning: The RPROP Algorithm. In: Ruspini, H., (Ed.) Proc. of the
ICNN 93, San Francisco, pp. 586-591.

3. Dhall, A., Goecke, R., Lucey, S., Gedeon, T. (2011, November). Static facial expres-
sions in tough conditions: Data, evaluation protocol and benchmark. In 1st IEEE
International Workshop on Benchmarking Facial Image Analysis Technologies Be-
FIT, ICCV2011.

4. N. K. Treadgold and T. D. Gedeon, “A cascade network algorithm em-ploying pro-
gressive rprop,” in Int. Work Conf. Artif. Natural NeuralNetw., 1997, pp. 733–742.’

5. Albawi, S., Mohammed, T. A., Al-Zawi, S. (2017): Understanding of a Convolutional
Neural Network. Antalya, Turkey, ICET2017.

6. Behnke, Sven (2003). Hierarchical Neural Networks for Image Interpretation (PDF).
Lecture Notes in Computer Science. 2766. Springer.


