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Abstract. Artificial Neural Networks (ANNs) are powerful statistical models that outperform other machine
learning techniques in many domains. The main shortcoming of ANNs is their black box nature, which makes
the design of a network topology as well as the explainability of the final trained network difficult. This
paper explores a solution to this problem by proposing an end-to-end system for building a deep dense neural
network architecture and explaining its predictions. The architecture is designed using a Genetic Algorithm
(GA). Subsequently, the network predictions are explained through Deep neural network Rule Extraction via
Decision tree induction (DeepRED) [22] and an explanation framework proposed by T. D. Gedeon, et al. [8, 7].
This system is applied to a dataset of electroencephalogram (EEG) readings with target values being calm or
stressful. The network designed by the GA achieves exceptional accuracy with good generalisation capabilities;
scoring 100.0% accuracy on test sets over numerous K-fold cross validation experiments in just 50 epochs. The
rules obtained with DeepRED achieve 93.8% fidelity meaning they are not as accurate as the neural network
and do not generalise as well however are of high enough quality to aid interpretation.
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1 Introduction

Neural networks are proven to be powerful classifiers and regressors in many domains however, their black box
nature often makes their application harder to justify. There are two downsides to the black box nature of neural
networks that this paper tackles: architecture design and explainability. In this paper only dense feedforward neural
networks are considered.

Deep neural network architecture design is often done in a somewhat arbitrary fashion. General rules of thumb
exist and domain knowledge can be applied but the problem is often approached as trial and error. Additionally, the
deeper a neural network becomes the harder it is to explain. To combat both of these issues, a Genetic Algorithm
(GA) to design neural network architectures is proposed. This is inspired by the L-NEAT algorithm which is an
extension of NEAT [19,4].

In many domains it is of great importance that the decision process used to reach a conclusion is human inter-
pretable and auditable. Many approaches to explanation of neural network decision processes have been proposed,
these largely fall into three categories: pedagogical, decompositional and eclectic [2]. This paper explores the use
of a decompositional approach to rule extraction alongside additional explanation mechanisms generated in a ped-
agogical fashion. In particular this paper explores an explanation process proposed by T. D. Gedeon, et al. [8,7].
For the rule extraction component Deep neural network Rule Extraction via Decision tree induction (DeepRED)
proposed by J. R. Zilke, et al. [22] is used. For additional explanation, characteristic patterns and a causal index
are used to gain insight into what the network considers important [8].

The end-to-end framework for neural network architecture design and explanation proposed in this paper is
achieved by combining the aforementioned genetic algorithm and explanation techniques. This framework allows
for a task specific neural network architecture to be constructed without sacrificing the explainability of the end
system.

This framework is applied to and evaluated on a dataset of electroencephalogram (EEG) readings with target
values being calm or stressful. EEG readings are not inherently easy to understand, generating predictions from
them with a neural network only exacerbates this. The dataset used for this paper is made from summary statistics of
EEG readings, combining this with an explanation framework makes the results of the neural network classification
process much clearer to users.

2 Data

For this project, a dataset of EEG readings from individuals being exposed to calm and stressful videos is used.
This dataset contains 144 readings from 24 participants, all labelled as either calm or stressful. This data is related
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to work in bimodal stress recognition done by Irani et al., in this case utilising EEG readings instead of thermal
video [12]. The pre-processing of the data into summarised features is inspired by work from Rahmin et al. [15].

2.1 EEG Data

There are two classes in the data: calm and stressful. The data is balanced with 72 examples of each class. The raw
data contains 15 features that have been extracted from EEG readings, these features are extracted for each of the
14 channels from the EEG creating a total of 210 attributes. As is discussed in the subsequent section only one of
the 15 features is deemed useful for the classification task at hand.

Data Exploration Inspection of five number summaries and histograms for each attribute shows that some
features are skewed and/or have notable outliers. One example of this is the sum feature, which is depicted in
Figure 1. This skewed distribution is important to keep in mind when observing neural network architectures in

subsequent sections.
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Fig. 1: Histogram of the sum feature aggregated by averaging all channels.

Plotting different combinations of channels for each feature allows for visual identification of class separable
features. Inspection of the such plots showed that the sum features provided good class separation. Thus, all other
features are dropped and only the 14 channels of sum features are used. An example of the clear separation between
the classes for the first 3 channels of the sum features are shown in Figure 2. There are a small number of points
that appear more entangled between the classes however these appear amongst outliers. This means that a neural
network should be able to disentangle these with complex enough decision boundaries.
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Fig. 2: Class separability for first three channels of the Sum feature.
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Selected Features The usefulness of the sum features is supported by other research into EEG classification
which identifies that frequency is an important feature [20], something which heavily effects sum.

2.2 Data Pre-processing

Pre-processing of the data was kept simple, a min-max [0 — 1] normalisation was used to form a training dataset
with all points in the range [0 — 1]. This simple pre-processing was used for two reasons. Firstly, it simplified
the denormalization process for generating explanations. Secondly, it proved more than adequate to achieve high
accuracy classification.

3 Evaluation Methods

In this paper, testing was done with K-fold cross validation repeated multiple times. This method was chosen to
ensure that the generalisation of any models used was tested exhaustively, despite the small amount of data. All
experiments were done using K = 5 and repeated 10 times. The average test accuracy over all folds and experiments
is thus the measure of how good a model is. In the case of this dataset K-fold cross validation with K = 5 means
115 instances for training and 29 instances for testing.

As a baseline for classification a decision tree was used. As the ultimate goal is explainability, the network must
outperform a decision tree for it to be worth considering. A decision tree evaluated with the above method obtains
95.2% accuracy and 95.5% F1 score across all folds and experiments, making this the baseline.

4 Neural Network

4.1 Network Architecture Design via a Genetic Algorithm

The process of designing a neural network can be viewed as having two main steps: design of network architecture
and training of the chosen network architecture. These are two inherently different problems. The first can be viewed
as a non-differentiable global search where the goal is to find a suitable local neighbourhood while the second can
be viewed as a differentiable local search of a selected neighbourhood. It follows logically that the first problem
being non-differentiable makes it a perfect candidate for a genetic algorithm and the second a perfect candidate for
backpropogation [4].

The genetic algorithm used in this work differs from others such as NEAT and L-NEAT [19, 4] in that all layers
are fully connected. However, like L-NEAT!, this genetic algorithm deals exclusively with architecture, not weights
and biases [4, 6]; weights and biases are learnt during fitness evaluation. The population of network architectures is
then evaluated by the method described in Section 3. The Adam optimiser was used with a learning rate of 0.001
when evaluating a network architecture, as is the case with many domains Adam provided the fastest convergence
in training and performed at least as well as stochastic gradient descent (SGD) over multiple trials [13]. SGD and
Adadelta were also tested with various learning rates but underperformed Adam.

The genotype of a network is represented as three lists of numbers: LayerIDs, ActivationIDs and OutFeatures.
These are each as long as the maximum depth specified by the user. The IDs for layers and activations correspond
different possible layers and activations. OutFeatures simply represents the number of out features a linear layer
at the corresponding index will have. There may also be no linear layer at a given index meaning the number of
OutFeatures at that same index has no effect on the network architecture.

This paper only considers potential architectures as fully connected dense networks that are comprised of linear
and batch normalisation layers. Additionally at each of the possible layers one of the following activation functions
can be used: Sigmoid, LogSigmoid, ReLU, Leaky ReLU, CELU, SELU, GELU, ReLU6 or Tanh. Instead of an
activation function, the genetic algorithm can also use ’drop out’ with a 0.2 probability [18].

There are three possible mutation operations. Layer mutation will replace a point in the LayerIDs with either
no layer, a linear layer or a batch normalisation layer. Activation mutation will replace a point in the ActivationIDs
with one of the activation functions listed above or none. Finally, neuron mutation replaces one of the OutFeatures
values with a random number between 1 and the maximum number of neurons. Crossover is done by concatenating
the LayerIDs, ActivationIDs and OutFeatures for each of the parents and randomly exchanging some number of
points between a minimum and maximum.

The fitness of a network is the accuracy it achieves when trained for a small number of epochs using the method
described in Section 3. It is important to use a small number of epochs to train the networks during evaluation
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to ensure that the fittest networks are easier to train. Networks that are easier to train are usually smaller and
subsequently these networks are easier to generate explanations for.
Fitness is accuracy and is in the range [0,1]. For selection, the fitnesses are scaled as shown in equation (1).

fitness’ = (fitness + 1)* (1)

Scaling the fitnesses like this increases separation between high and low performing candidates. For any indi-
vidual, its probability of being selected is its scaled fitness divided by the total scaled fitnesses of the population.
Elitism is also used, meaning the fittest network is guaranteed a spot in the next population.

This process is defined by the hyperparameters in Table 1.

Table 1: Hyperparameters for Genetic Algorithm

Hyperparameter Value|Description

Max Neurons 256  |Maximum out features of a linear layer

Max Layers 5 Maximum depth of network

Population Size 100  |Size of population

Max Initial Mutations 5 Maximum number of mutations to diversify initial population
Crossover Rate 80% |Probability to crossover

Max Cross Points 6 Maximum points in DNA to exchange

Min Cross Points 1 Minimum points in DNA to exchange

Layer Mutate Chance 2% Chance to mutate a layer

Activation Mutate Chance|4% Chance to mutate an activation

Neuron Mutate Chance  [5% Chance to mutate an out feature size

N Generations 10 Number of generations

K 5 Number of folds for cross fold validation

N Experiments 10 Number of times to run K-fold cross validation
Epochs 10 Number of epochs to use when evaluating fitness
LR 0.001 |Learning rate for Adam optimiser

4.2 Architecture

The neural network created by the genetic algorithm is depicted in Table 2:

Table 2: Neural Network Architecture

Component Number{Component | Trainable Weights|Trainable Biases
1 Linear 14 x 220 220

2 GELU N/A N/A

3 Linear 220 x 84 84

4 BatchNorm1d |84 84

5 ReLU N/A N/A

6 Linear 84 x1 1

7 Sigmoid N/A N/A

The architecture above was the fittest network from an example run of the genetic algorithm, running the
genetic algorithm again will potentially result in a different architecture. Weights for the linear layers are initialised
by sampling the Kaiming uniform distribution using a negative slope of v/5 for the rectifier [14, 9].

From multiple tests of the genetic algorithm it was observed that the best networks always had at least one
batch normalisation layer. This makes sense as batch normalisation tends to accelerate training and the networks
were evaluated on a very small number of epochs [11]. Batch normalisation also helps the network remain robust
to the skewed distribution of certain features, as was identified in the data exploration phase. It was also observed
that the Gaussian Error Linear Units (GELU) activation would appear in most of the fittest network architectures.
Evidently GELU nonlinearity improves performance in this classification task - the original paper proposing the
function also observed better performance for GELU compared ReLU and ELU on multiple benchmarks [10].
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4.3 Evaluation of Performance

The genetic algorithm proved effective for designing an optimal topology for the network. Over the ten generations
a steady increase in the performance of the fittest network can be observed. Figure 3 shows this increase, with
the last generations fittest network topology scoring over 10% higher accuracy than the initial population. This
outperforms the baseline decision tree from Section 3 with only 10 epochs of training. Also noticeable is that the
minimum accuracy does not trend upwards. This is because some crossovers can produce significantly worse neural
networks.
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Fig. 3: Average, max and min test accuracies for the population at each generation

Further training of the fittest model, detailed in Table 2, resulted in an average test accuracy of 100.0% in 50
epochs using the evaluation method described in Section 3.

5 Generating Explanations

5.1 Causal Index

As part of the explanation process, a mechanism allowing the identification of inputs that can be considered
important to the neural network is required, for this, a causal index is used. The causal indez is defined as the rate
of change in the output Y with respect to each input X; in the input vector X [3]. This means that the causal index
is proportional to the partial derivative of each input X; with respect to the single output neuron Y, this is shown
in equation (2).
oY

Cix o (2)
where C; is the gradient at the index i in the causal index C. This represents the relationship between the i-th
input neuron and the output neuron. The magnitude of a number C; indicates the strength of the relationship and
the sign indicates a positive or negative correlation. To aid interpretation, a relative causal index (denoted by RC')
is also created; this represents the relative importance of each input in relation to the given output [5]. RC' is given
in (3).

C
= Tch ®)

The magnitude of the values in the causal index is dependant on how confident the neural network is in its
predictions as the gradients are smaller closer to the minimum and maximum of the Sigmoid activation. Thus, the

RC
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relative causal index is used to identify important inputs by instead looking at their relative importance to the
output.

5.2 Characteristic Input Patterns

Generating a causal index for every input in the dataset complicates the explanation process. The problem is thus
simplified through the use of characteristic input patterns proposed by T. D. Gedeon, et al. [8,7]. Characteristic
input patterns are patterns which are representative of the networks’ decisions rather than of the ground truth
labels. In this paper characteristic on (CON) and characteristic off (COFF) patterns are generated in relation to
the output neuron. Thus CON corresponds to a prediction of stressful and COFF corresponds to a prediction of
calm.

Characteristic patterns are created by taking the mean of each vector component for all vectors in the input
data that cause a prediction of a given class.

5.3 Rule Extraction
For rule extraction the DeepRED algorithm is used [22]. Rules are evaluated by their fidelity given in (4).

Fidelity = agreements (4)
N
where agreements is the number of times the rules when applied to an input z agree with the neural networks
classification of x and N is the number of testing examples.
DeepRED is an algorithm to induce rules from a neural network using decision trees. DeepRED is a decompo-
sitional approach however it will work with any feedforward neural network [22] and is an extension of the CRED
algorithm [17]. To decompose the network, the architecture is split at every linear layer as shown in Table 3:

Table 3: Neural Network Decomposition

Component Group ID|LayerID|Layer
1 1 Linear
2 GELU
2 3 Linear
4 BatchNormld
5 ReLLU
3 6 Linear
7 Sigmoid

Using the decomposed version of the network (Table 3), decision tree classifiers are trained to predict the output
of a component group given an input. This is done by first training a decision tree to predict the output of the
last component group using the output from the previous component group. The rules generated from this decision
tree are then converted into class labels for each rule. Another decision tree is then trained to predict these new
labels using the input of the component group that comes before them. This is repeated until there are trained
decision trees to model each component group. The rules from each decision tree are then consolidated to form rules
that map from input to output. Intermediated inequalities in the consolidated rules that pertain to hidden layers
can be removed to simplify the rules and aid interpretation. This approach yields very accurate rules which, most
importantly, are easy for a human to understand.

For the subsequent evaluation, the same K-fold cross validation experiment as outlined in section 3 was performed
with the neural networks predictions as targets. The rules extracted using DeepRED obtained 97.1% fidelity on the
training set and 93.8% fidelity on the testing set. While the extracted rules perform worse than the neural network
and generalise worse than the baseline decision tree they are still of high enough fidelity to be useful in aiding
explanation of neural network decision processes.

6 Results

Explanations of the neural networks decision process for a given input are generated as follows:
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. Present the prediction of the neural network.

. Present the prediction of the extracted rules and the rule that was satisfied.

. Find the closest characteristic pattern.

. Identify the important inputs and their characteristic values.

. Show how far away the important inputs were from their characteristic values.

U W N —

In Section 4.3 it was shown that the genetic algorithm successfully evolved a robust neural network capable of
achieving 100.0% accuracy on unseen testing data from multiple possible test partitions. Additionally, in Section 5.3,
the capabilities of DeepRED were assessed proving its ability to perform robust rule extraction, albeit with a slightly
worse ability to generalise than the baseline decision tree.

Given the provable robustness of the neural network, all components of the framework can now be combined
to form an explanation system. The neural network, DeepRED rule extraction, characteristic input patterns and
causal index are thus trained/calculated using the entire dataset.

With 50 epochs of training the neural network obtains 100.0% accuracy (as expected). The rules extracted by
DeepRED for the entire dataset achieve 97.92% fidelity - similar to the training data fidelity observed in Section 5.3.
The characteristic input patterns are closest by Euclidean distance to 91.67% of examples from their respective
classes.

The extracted rules with 97.92% fidelity are provided below, followed by an example explanation that was
generated by the system. Note that the example explanation also includes the true label that is known from the
data, this is simply for illustrative purposes and would not be included in a productionised version of the system.

Extracted Rules:

sum_T7 <= 7.806 and sum_01 <= 6.575 then calm

sum_T7 <= 7.806 and sum_01 > 6.575 and sum_P7 <= 8.449 then stressful
sum_T7 <= 7.806 and sum_01 > 6.575 and sum_P7 > 8.449 then calm
sum_T7 > 7.806 then calm

Explanation example:

Explanation of prediction for participant 1
Real label is stressful

Explaining network output for input:

sum_AF3: 7.2103 sum_F7: 7.826

sum_F3: 8.5539 sum_FC5: 7.3452
sum_T7: 7.5841 sum_P7: 8.2268
sum_01: 7.4689 sum_02: 7.7649
sum_P8: 8.2481 sum_T8: 8.0818
sum_FC6: 6.3042 sum_F4: 7.635

sum_F8: 7.4892 sum_AF4: 7.3096

Neural network prediction: stressful
Rule set prediction: stressful

Satisfies the following rule:
sum_T7 <= 7.806 and sum_01 > 6.575 and sum_P7 <= 8.449 then stressful

Input is closest to characteristic pattern of calm

Important attributes and their characteristic values:
sum_AF3: 7.582
sum_P7: 8.6496
sum_FC6: 6.7111

Difference between input and important characteristic values:
sum_AF3: -0.3717
sum_P7: -0.4229
sum_FC6: -0.4069
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The example explanation provides confidence in the neural network prediction as it shows that the neural
network and rule set agree. The Sum P7 variable is identified as an important variable by the relative causal index
and also appears in the satisfied rule. The extracted rules show that Sum P7 is the only variable that allows the rule
set to differentiate between calm and stressful; reinforcing the notion that DeepRED generates rules reflecting the
inner workings of the neural network. The difference between the provided example and the characteristic values
is very high; the example is in fact closer to the incorrect characteristic pattern. However, the relative causal index
and the extracted rules are effective at contextualising this discrepancy: the Sum P7 value is especially low in this
example and the rules show that a lower value for Sum P7 produces a prediction of stressful.

7 Discussion

The proposed framework proves itself to be highly effective at both the classification and explanation components
of the task. Additionally, aside from the provision of a small selection of hyperparameters the framework presented
is largely automated; architecture design, training, decomposition and explanation require minimal user input. The
explanations generated are capable of giving a user invaluable insight into the decision process.

The genetic algorithm proposed for evolution of neural network architectures was capable of developing a very
high performing network in a small number of generations. The process was not computationally expensive with
the small dataset and constrained architecture used in this paper; each generation took approximately 80 seconds
on a consumer graphics processing unit (Nvidia 2080 Super). In other applications however, the exact approach
used in this work might be too computationally expensive. This could be counteracted by using a train-test split
with only one experiment instead of the multiple experiments of K-fold cross validation used in this work. If a
larger dataset was being used then a train-test split is more likely to have similar distributions in the train and test
partitions. Additionally the process of evaluating each member of the population could be parallelised, especially if
more compute hardware was available.

Normally decompositional approaches do not apply to all model architectures. However, DeepRED is applicable
to any feedforward network, although the algorithm does work best with dense networks. Decomposing the network
means that the rules extracted using DeepRED are representative of the complete decision process of the neural
network. The extracted rules could even be left in their full form to detail the thresholds of important neurons at
each layer in the network if that level of detail was required.

DeepRED has the potential to create a large number of rules although this can be somewhat limited by adjusting
the hyperparameters of the decision trees to minimise their depth. In this paper no limitations are imposed on the
depth of the decision trees and the number of rules extracted appears to remain reasonable however this is not
guaranteed for other neural networks or datasets.

The baseline decision tree outperformed the DeepRED rule extraction process meaning the extracted rules do
not act as a white box alternative to a neural network. This framework is better suited to an application where
accuracy and explainability are both of great importance. The neural network and the explanation techniques work
together to build a cohesive and user friendly system.

8 Further Work

There is still much work to be done in the realm of explainability for neural networks. Decompositional approaches
have proven to be very effective in generating comprehensible rules with high fidelity but do not generalise well
to all architectures. Pedagogical approaches that work independent of network architecture are far more flexible
but often do not perform as well. Pedagogical algorithms such as VIA and HYPINV [21, 16] would likely be better
approaches for pedagogical rule extraction with the framework and data used in this paper and this should be
explored in future.

For higher dimensional data, the notion of characteristic input patterns becomes more complicated. The mean-
ingfulness of averaging vector components and calculating Euclidean distances is diminished as dimensionality
increases [1]. A new approach is required for more complex data.

One of the key challenges for work on neural network explainability going forward is creating an approach
that operates independent of network architecture. This should include architectures such as convolutional neural
networks, which are far more difficult to extract if-then-else rules from, as they are translation invariant; meaning
the content of the input is important as oppose to the location of that content in the input.

The idea of network architecture independent approaches is also relevant to the genetic algorithm proposed in
this paper. Only deep dense feedforward neural networks were considered however, for many forms of data this
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is not sufficient. The framework proposed here would be relatively easy to expand to recurrent neural networks,
convolutional neural networks or transformers. Ideally such a system would abstract almost all decisions about
network architecture design away from the user.
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