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Abstract 

Artificial neural networks and genetic algorithms are well renowned machine learning 
concepts that have been intricately modelled on natural biological processes. Many 
researchers opine that this similarity predisposes them to be effective at solving 
optimization problems [1]. Notwithstanding their disjoint usage in the past, the 
combination of genetic algorithms and artificial neural networks continue to widen the 
spectrum of solvable challenges. In recent years, the duo has found frequent application 
in the realm of non-linear process optimization wherein an ostensible analytical solution 
is either completely absent or heavily camouflaged [5]. In this paper, I have chosen a 
dataset that comprises partial grades from the teaching session of large undergraduate 
computer science courses at the University of New South Wales. The premise is set 
under a simple backpropagation neural network which attempts to predict the final 
examination grades of students based on their current performance of the semester [3]. 
Initially, I’ve applied basic preprocessing, domain-oriented outlier detection techniques 
and k-fold validation to enhance the accuracy of the network. Later on, I’ve employed 
the genetic algorithms to train the classical neural network by fine tuning its weights and 
biases. The ultimate aim is to optimise our model’s prediction accuracy. 
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Introduction 
Predicting final exam grades is a highly non-linear process because the data consists of 
a lot of random noise. This is manifested by missing scores for quite a few assessment 
items. Heeding these hurdles, the data of such a problem is best suited to be solved by 
an artificial neural network optimised by genetic algorithms. Unlike other optimisation 
techniques, genetic algorithms try to locate the optimal solution by applying basic data 
processing methods like string manipulation and random number simulation. The 
feasibility of these elementary yet effective methods lessens the computation burden on 
the overall training process.  

Genetic Algorithms 
A genetic algorithm can be described as an all-weather random search technique which 
is frequently employed to solve optimization problems. It offers a unique way to train 
artificial neural networks since it’s not susceptible to being stuck in the local minima [6].  
Genetic algorithms were built upon the Darwinian evolution process which advocates 
the much acclaimed philosophy of “survival of the fittest”. The main idea of the algorithm 
is to operate on a set of features known as chromosomes. A vast multitude of such 
features collectively constitute what is known as the population. Given the Darwinian 
origins of these algorithms, defining an apposite criterion of fitness becomes critical for 
establishing the right parameters for the optimization process.  
 
Listed below are the operations employed to solve the problem mentioned in this work.  

Selection 
Selection allows us to find out the fittest chromosomes within the current population. 
The crucial step is to produce a transit generation which comprises chromosomes from 
the current layer in direct ratio of their fitness score. This ensures that the next 
generation is a kin to its fittest predecessors. This process of natural selection essays a 
major role in perpetuating only the fittest chromosomes across generations. 

Crossover 
The procreation of two offspring from two parents is known as a crossover. It is brought 
about by the exchange of genetic blocks between the two parents at randomly chosen 
crossover points. 



Mutation 
Mutation is used to randomly introduce new alleles in the population. These new alleles 
are introduced through a random flipping in the bit sequence of a chromosome (string). 
The role of mutation is to prevent premature convergence in the population by 
disrupting homogeneity and enhancing diversity. In the broader scheme of things, this 
guarantees that we find a global minimum (fitness peak) instead of getting stuck in a 
local minima (substandard fitness). Having mentioned the benefits of mutation, one 
should be extremely careful at applying it too frequently since that could lead to an 
unsustainably unrecognizable pair of adjacent generations spelling catastrophe for the 
survival of the overall population. 
 

Outlier detection and eradication 
The accuracy of a backpropagation neural network is greatly influenced by the presence 
of outliers in the data that is used to train it. Consequently, detection and removal of 
outliers is believed to considerably improve the generalizability of our model. Over the 
years, researchers have devised methods like the Absolute Criterion Method, Least 
Means Squares method and Least Trimmed Squares method among several others to 
find and eradicate outliers from their dataset [7]. While some of these have certainly 
proved to be effective on artificially noisy training datasets, the real world anomalies 
aren’t picked up very easily using such techniques [7]. Keeping this in mind, the 
Bimodal Removal Distribution Technique was composed to tackle real world noisy data 
sets. 

Method 

Feature Selection 
Due to the limited size of the dataset and the high count of missing values in our data, I 
decided to include all the numeric columns pertaining to a student’s grades as features 
in my model. There are 10 such features all of which are being factored in by the model 
before predicting the student’s final exam scores. 
 



 
Fig 1: Features used to inform final exam scores 

 

Preprocessing the data 
 
The initial dataset was in the form of text and it had several missing values. In order to 
be able to feed it to a neural network, I had to apply a numeric transformation on it. The 
missing values were replaced by zeroes. 

 
Fig 2: Features after numeric transformation (missing values replaced by 0s) 

 
As can be seen from Fig 2, each column represents the batch’s score in a particular 
assessment. The maximum possible score offered by each assessment is distinct, e.g. 
the maximum one can score in “tutass (5)” is different from what one can get in some 
other assessment, say “lab2 (3)”. This made it critical for me to normalise the data i.e. 
transform the scores to a common scale, whilst preserving the difference in the ranges 
of values. Without normalisation, the scores from “tutass” would have intrinsically 
influenced the result more than some lowly-valued attributes like “lab3” due to its larger 
value. A larger influence achieved this way didn’t necessarily mandate that “tutass” was 
a richer predictor of the final exam grades.  
 
Out of the umteen choices one has in normalising numericals such as exam scores, I 
decided to use the min-max scaler that transforms the given score into a ratio of the 
marks achieved to the maximum attainable scores between 0 and 1. 
 



  i Z =  Xi
max (X)  

 
where Xi is the actual score achieved by a student in an assessment piece and max(X) 
is the maximum attainable score in that assessment. 
 

 
Fig 3: Features after normalisation 

Classic Backpropagation  
The choice of topology i.e. the number of layers and the number of neurons in each 
layer is an important one to make whilst designing a neural network. Depending on 
whether our network is too deep and dense or too shallow and sparse, the adjustment 
of weights can vary significantly. I decided to produce a four-layered network with 10 
neurons in the initial layer, 25 neurons in the first hidden layer, 19 neurons in the 
second hidden layer and a single output neuron. Apart from the topology, I 
experimented with the network to find the best learning rate for convergence and 
optimal training time. Likewise, I  tried different activation functions before settling down 
with (ReLu) because it’s computationally superior to most of its alternatives.  
Each epoch’s performance is computed by finding the discrepancy between the actual 
and expected values through the Mean Square Loss criterion. Whilst propagating 
backwards, we reset the gradients to prevent unnecessary accumulation. This is 
followed by a backward pass to compute loss gradients with regards to every adjustable 
parameter. Finally the optimiser (Adam in this case) is used to update the parameters 
accordingly. 
 

Cross Validation 
Validating one’s model is always a good idea because it assures us about its ability to 
retain low bias and variance. Initially, I held out a portion of the training data to make 
predictions. Even though this method is computationally cheap, it didn’t give me any 
control over the variance in the results because it’s impossible to predetermine which 



data points will be included in the hold-out sample as opposed to the training sample. 
As a result, the results could be entirely different for different combinations of training 
and hold-out samples. Apart from the risk of an unknown variance, I also ran the risk of 
underfitting our model because of its small size. To tackle this problem, I used the K-fold 
cross validation technique whereby the train-test split method is repeated k times. In 
each iteration, one of the k subsets is chosen to be the validation set and the remaining 
k-1 subsets are used for training. This way, we’re able to significantly diminish the bias 
since the entire data is used both for training as well as validation. 
 
 

 
Fig 4: K-fold cross validation [4] 

Bimodal Distribution Removal 
The first step towards discerning the nature of outliers within our training dataset was to 
investigate the frequency distributions of errors for all the patterns. In earlier epochs 
when the model was largely untrained, the error distribution was found to have high 
variance. Later on, however, I observed that the losses plunged quite sharply. However, 
as can be seen from the red coloured distribution shown in Fig 5, there exists some 
patterns with relatively high errors. This occurrence creates a bimodal error distribution 
with the low error peak containing patterns the network has learnt well, and the high 
error peak containing the outliers [7].  
 



 
Fig 5: Error distribution at epochs 1 and 250 respectively 

 
In selecting which patterns to remove as outliers, we first need to compute the mean of 
all errors in the training data set denoted by ts. Next up we pool out all those patternsμ  
with error greater than ts. Then we calculate the mean ss and standard deviation ssμ μ σ  
of this pool [7]. Using these two empirical quantities, we decide which outliers are to be 
permanently eradicated from our training dataset. Those patterns with error greater than 
or equal to ss +  ss , where  are binned. Every run of BDR would get rid ofμ α σ   0 ≤ α ≤ 1  
a few outliers from the high error peak and nudge it rightwards.  

Genetic Algorithms 
I designed my genetic algorithm to be implemented in the following 6 steps: - 

1. Randomly instantiate the population 
2. Every chromosome is assigned a fitness score based on the pre decided criteria 
3. Choose the fitness chromosomes based on a minimum subsistence threshold. 
4. Exchange the features between the selected portion of chromosomes. This 

process is also called crossover. 
5. Choose a few random chromosomes and apply certain random mutations to their 

features to increase diversity 



6. Loop back to Step 2 and carry onto future generations. 
 

Fig 6: The selection and recombination process carried out at each generation 
 
Genetic algorithms fall under a versatile umbrella of algorithms which can be used to 
both train as well optimise an artificial neural network. In our case, every single 
chromosome consists of all the weights of the ANN. 

Results and Discussion 

Classic Backpropagation 
On training the data with backpropagation on a classic feedforward neural network, we 
get an error value of close to 0.00323 by the end of 500 epochs. As can be observed 
from the loss comparison shown below, the error plunges quite early on during the 
training phase and then continues to show incremental improvements before plateauing 
near the 500 epoch mark. On evaluating the model with unseen data, we get an error 
value of about 0.00347 which is marginally greater than the eventual training error. This 
suggests that if we had trained any longer, our model would have likely overfit the given 
data. 
 



 
Fig 7: Mean Square Error progression over 500 epochs 

Cross Validation 
On training the data with K-fold (optimal K value = 3) cross validation on a classic 
feedforward neural network, we get an error value of close to 0.00567 by the end of 500 
epochs. As can be observed from the loss comparison shown below, the error 
decreases exponentially during the training phase before plateauing near the 500 epoch 
mark. On evaluating the model with unseen data, we get an error value of about 
0.00622 which is marginally greater than the eventual training error. This suggests that 
if we had trained any longer, our model would have likely overfit the given data.  
 



 
Fig 8: Mean Square Error progression over 500 epochs 

 

Genetic Algorithm 
On training the neural network under the genetic algorithm for 100 generations with a 
crossover rate of 0.8 and a mutation rate of 0.002, we get an error value close to 
0.00165 after 500 epochs. On evaluating the model with unseen data, we get an error 
value of about 0.0010 which is better than the previous attempts. Even though the 
improvement is marginal, the training time for the network is significantly reduced as 
compared to other approaches. 



 
Fig 9: Mean Square Error progression over 500 epochs 

 

Limitation 
One of the major limitations of genetic algorithms that was exposed through this piece 
of implementation was that we need a sizable population to produce accurate results. 
Without a considerably large initial population, the genetic algorithm will never have 
enough elbow room to find out the optimal solutions. Before the implementation, 
python’s sensitivity towards tolerating random changes in the representation of 
chromosomes had fleetingly threatened the accuracy of the final results but it was 
handled without much trouble in the end. Another major limitation of my algorithm is its 
heavy reliance on the fitness function to pave the way for subsequent generations of the 
population. Even the slightest of tinkering with the fitness function could lead to a 
massive discrepancy between the actual and optimal solution. Besides finding an 
appropriate fitness criteria and population size, other factors like crossover and mutation 
rate too can disproportionately influence the accuracy of the final results. 



Conclusion and Future Work 
Heeding the above mentioned limitations of my work, I would like to test the efficacy of 
genetic algorithms in optimising the performance of a neural network by applying it to 
more non-linear as well as purely analytical problems. This would allow me to 
appreciate its primary tactics in greater depth. Whilst attempting to learn from this 
comparison, I would also want to test different fitness criteria, crossover and mutation 
rates so that I can intricately understand the impact that they bear on the overall 
convergence across several generations.  
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