
The Implementation of Genetic
Algorithms on

Neural Network & Experiment on Marks
Prediction Dataset

Utkarsh Marwaha
Research School of Computer Science,

Australian National University,
utkarsh.marwaha@anu.edu.au

Abstract

Artificial neural networks and genetic algorithms are well renowned machine learning
concepts that have been intricately modelled on natural biological processes. Many
researchers opine that this similarity predisposes them to be effective at solving
optimization problems [1]. Notwithstanding their disjoint usage in the past, the
combination of genetic algorithms and artificial neural networks continue to widen the
spectrum of solvable challenges. In recent years, the duo has found frequent application
in the realm of non-linear process optimization wherein an ostensible analytical solution
is either completely absent or heavily camouflaged [5]. In this paper, I have chosen a
dataset that comprises partial grades from the teaching session of large undergraduate
computer science courses at the University of New South Wales. The premise is set
under a simple backpropagation neural network which attempts to predict the final
examination grades of students based on their current performance of the semester [3].
Initially, I’ve applied basic preprocessing, domain-oriented outlier detection techniques
and k-fold validation to enhance the accuracy of the network. Later on, I’ve employed
the genetic algorithms to train the classical neural network by fine tuning its weights and
biases. The ultimate aim is to optimise our model’s prediction accuracy.

Keywords​: Neural Network, Backpropagation, Outliers, Genetic algorithms.

Introduction
Predicting final exam grades is a highly non-linear process because the data consists of
a lot of random noise. This is manifested by missing scores for quite a few assessment
items. Heeding these hurdles, the data of such a problem is best suited to be solved by
an artificial neural network optimised by genetic algorithms. Unlike other optimisation
techniques, genetic algorithms try to locate the optimal solution by applying basic data
processing methods like string manipulation and random number simulation. The
feasibility of these elementary yet effective methods lessens the computation burden on
the overall training process.

Genetic Algorithms
A genetic algorithm can be described as an all-weather random search technique which
is frequently employed to solve optimization problems. It offers a unique way to train
artificial neural networks since it’s not susceptible to being stuck in the local minima [6].
Genetic algorithms were built upon the Darwinian evolution process which advocates
the much acclaimed philosophy of “survival of the fittest”. The main idea of the algorithm
is to operate on a set of features known as chromosomes. A vast multitude of such
features collectively constitute what is known as the population. Given the Darwinian
origins of these algorithms, defining an apposite criterion of fitness becomes critical for
establishing the right parameters for the optimization process.

Listed below are the operations employed to solve the problem mentioned in this work.

Selection
Selection allows us to find out the fittest chromosomes within the current population.
The crucial step is to produce a transit generation which comprises chromosomes from
the current layer in direct ratio of their fitness score. This ensures that the next
generation is a kin to its fittest predecessors. This process of natural selection essays a
major role in perpetuating only the fittest chromosomes across generations.

Crossover
The procreation of two offspring from two parents is known as a crossover. It is brought
about by the exchange of genetic blocks between the two parents at randomly chosen
crossover points.

Mutation
Mutation is used to randomly introduce new alleles in the population. These new alleles
are introduced through a random flipping in the bit sequence of a chromosome (string).
The role of mutation is to prevent premature convergence in the population by
disrupting homogeneity and enhancing diversity. In the broader scheme of things, this
guarantees that we find a global minimum (fitness peak) instead of getting stuck in a
local minima (substandard fitness). Having mentioned the benefits of mutation, one
should be extremely careful at applying it too frequently since that could lead to an
unsustainably unrecognizable pair of adjacent generations spelling catastrophe for the
survival of the overall population.

Outlier detection and eradication
The accuracy of a backpropagation neural network is greatly influenced by the presence
of outliers in the data that is used to train it. Consequently, detection and removal of
outliers is believed to considerably improve the generalizability of our model. Over the
years, researchers have devised methods like the Absolute Criterion Method, Least
Means Squares method and Least Trimmed Squares method among several others to
find and eradicate outliers from their dataset [7]. While some of these have certainly
proved to be effective on artificially noisy training datasets, the real world anomalies
aren’t picked up very easily using such techniques [7]. Keeping this in mind, the
Bimodal Removal Distribution Technique was composed to tackle real world noisy data
sets.

Method

Feature Selection
Due to the limited size of the dataset and the high count of missing values in our data, I
decided to include all the numeric columns pertaining to a student’s grades as features
in my model. There are 10 such features all of which are being factored in by the model
before predicting the student’s final exam scores.

Fig 1: Features used to inform final exam scores

Preprocessing the data

The initial dataset was in the form of text and it had several missing values. In order to
be able to feed it to a neural network, I had to apply a numeric transformation on it. The
missing values were replaced by zeroes.

Fig 2: Features after numeric transformation (missing values replaced by 0s)

As can be seen from Fig 2, each column represents the batch’s score in a particular
assessment. The maximum possible score offered by each assessment is distinct, e.g.
the maximum one can score in “tutass (5)” is different from what one can get in some
other assessment, say “lab2 (3)”. This made it critical for me to normalise the data i.e.
transform the scores to a common scale, whilst preserving the difference in the ranges
of values. Without normalisation, the scores from “tutass” would have intrinsically
influenced the result more than some lowly-valued attributes like “lab3” due to its larger
value. A larger influence achieved this way didn’t necessarily mandate that “tutass” was
a richer predictor of the final exam grades.

Out of the umteen choices one has in normalising numericals such as exam scores, I
decided to use the min-max scaler that transforms the given score into a ratio of the
marks achieved to the maximum attainable scores between 0 and 1.

 i Z = Xi
max (X)

where Xi is the actual score achieved by a student in an assessment piece and max(X)
is the maximum attainable score in that assessment.

Fig 3: Features after normalisation

Classic Backpropagation
The choice of topology i.e. the number of layers and the number of neurons in each
layer is an important one to make whilst designing a neural network. Depending on
whether our network is too deep and dense or too shallow and sparse, the adjustment
of weights can vary significantly. I decided to produce a four-layered network with 10
neurons in the initial layer, 25 neurons in the first hidden layer, 19 neurons in the
second hidden layer and a single output neuron. Apart from the topology, I
experimented with the network to find the best learning rate for convergence and
optimal training time. Likewise, I tried different activation functions before settling down
with (ReLu) because it’s computationally superior to most of its alternatives.
Each epoch’s performance is computed by finding the discrepancy between the actual
and expected values through the Mean Square Loss criterion. Whilst propagating
backwards, we reset the gradients to prevent unnecessary accumulation. This is
followed by a backward pass to compute loss gradients with regards to every adjustable
parameter. Finally the optimiser (Adam in this case) is used to update the parameters
accordingly.

Cross Validation
Validating one’s model is always a good idea because it assures us about its ability to
retain low bias and variance. Initially, I held out a portion of the training data to make
p​redictions. Even though this method is computationally cheap, it didn’t give me any
control over the variance in the results because it’s impossible to predetermine which

data points will be included in the hold-out sample as opposed to the training sample.
As a result, the results could be entirely different for different combinations of training
and hold-out samples. Apart from the risk of an unknown variance, I also ran the risk of
underfitting our model because of its small size. To tackle this problem, I used the K-fold
cross validation technique whereby the train-test split method is repeated k times. In
each iteration, one of the k subsets is chosen to be the validation set and the remaining
k-1 subsets are used for training. This way, we’re able to significantly diminish the bias
since the entire data is used both for training as well as validation.

Fig 4: K-fold cross validation [4]

Bimodal Distribution Removal
The first step towards discerning the nature of outliers within our training dataset was to
investigate the frequency distributions of errors for all the patterns. In earlier epochs
when the model was largely untrained, the error distribution was found to have high
variance. Later on, however, I observed that the losses plunged quite sharply. However,
as can be seen from the red coloured distribution shown in Fig 5, there exists some
patterns with relatively high errors. This occurrence creates a bimodal error distribution
with the low error peak containing patterns the network has learnt well, and the high
error peak containing the outliers [7].

Fig 5: Error distribution at epochs 1 and 250 respectively

In selecting which patterns to remove as outliers, we first need to compute the mean of
all errors in the training data set denoted by ts​. Next up we pool out all those patternsμ
with error greater than ts​. Then we calculate the mean ss​ and standard deviation ssμ μ σ
of this pool [7]. Using these two empirical quantities, we decide which outliers are to be
permanently eradicated from our training dataset. Those patterns with error greater than
or equal to ss ​+ ss​ , where are binned. Every run of BDR would get rid ofμ α σ 0 ≤ α ≤ 1
a few outliers from the high error peak and nudge it rightwards.

Genetic Algorithms
I designed my genetic algorithm to be implemented in the following 6 steps: -

1. Randomly instantiate the population
2. Every chromosome is assigned a fitness score based on the pre decided criteria
3. Choose the fitness chromosomes based on a minimum subsistence threshold.
4. Exchange the features between the selected portion of chromosomes. This

process is also called crossover.
5. Choose a few random chromosomes and apply certain random mutations to their

features to increase diversity

6. Loop back to Step 2 and carry onto future generations.

Fig 6: The selection and recombination process carried out at each generation

Genetic algorithms fall under a versatile umbrella of algorithms which can be used to
both train as well optimise an artificial neural network. In our case, every single
chromosome consists of all the weights of the ANN.

Results and Discussion

Classic Backpropagation
On training the data with backpropagation on a classic feedforward neural network, we
get an error value of close to ​0.00323 by the end of 500 epochs. As can be observed
from the loss comparison shown below, the error plunges quite early on during the
training phase and then continues to show incremental improvements before plateauing
near the 500 epoch mark. On evaluating the model with unseen data, we get an error
value of about 0.00347 which is marginally greater than the eventual training error. This
suggests that if we had trained any longer, our model would have likely overfit the given
data.

Fig 7: Mean Square Error progression over 500 epochs

Cross Validation
On training the data with K-fold (optimal K value = 3) cross validation on a classic
feedforward neural network, we get an error value of close to ​0.00567 by the end of 500
epochs. As can be observed from the loss comparison shown below, the error
decreases exponentially during the training phase before plateauing near the 500 epoch
mark. On evaluating the model with unseen data, we get an error value of about
0.00622 which is marginally greater than the eventual training error. This suggests that
if we had trained any longer, our model would have likely overfit the given data.

Fig 8: Mean Square Error progression over 500 epochs

Genetic Algorithm
On training the neural network under the genetic algorithm for 100 generations with a
crossover rate of 0.8 and a mutation rate of 0.002, we get an error value close to
0.00165 after 500 epochs​. On evaluating the model with unseen data, we get an error
value of about 0.0010 which is better than the previous attempts. Even though the
improvement is marginal, the training time for the network is significantly reduced as
compared to other approaches.

Fig 9: Mean Square Error progression over 500 epochs

Limitation
One of the major limitations of genetic algorithms that was exposed through this piece
of implementation was that we need a sizable population to produce accurate results.
Without a considerably large initial population, the genetic algorithm will never have
enough elbow room to find out the optimal solutions. Before the implementation,
python’s sensitivity towards tolerating random changes in the representation of
chromosomes had fleetingly threatened the accuracy of the final results but it was
handled without much trouble in the end. Another major limitation of my algorithm is its
heavy reliance on the fitness function to pave the way for subsequent generations of the
population. Even the slightest of tinkering with the fitness function could lead to a
massive discrepancy between the actual and optimal solution. Besides finding an
appropriate fitness criteria and population size, other factors like crossover and mutation
rate too can disproportionately influence the accuracy of the final results.

Conclusion and Future Work
Heeding the above mentioned limitations of my work, I would like to test the efficacy of
genetic algorithms in optimising the performance of a neural network by applying it to
more non-linear as well as purely analytical problems. This would allow me to
appreciate its primary tactics in greater depth. Whilst attempting to learn from this
comparison, I would also want to test different fitness criteria, crossover and mutation
rates so that I can intricately understand the impact that they bear on the overall
convergence across several generations.

References

1. Smith K. A., Gupta J. N. D., Neural networks in business: techniques and
applications for the operations researcher, Computers & Operations Research
27, 2000, 1023-1044.

2. F. E. Grubbs, “Procedures for detection outlying observations in samples,”
Technometrics (1969).

3. Gedeon, T.D. and Turner, S., 1993, October. Explaining student grades
predicted by a neural network. In ​Proceedings of 1993 International Conference
on Neural Networks (IJCNN-93-Nagoya, Japan)​ (Vol. 1, pp. 609-612). IEEE.

4. Niu, M., Li, Y., Wang, C. and Han, K., 2018. RFAmyloid: a web server for
predicting amyloid proteins. ​International journal of molecular sciences​, ​19​(7).

5. Dokur Z., Segmentation of MR and CT Images Using a Hybrid Neural Network
Trained by Genetic Algorithm, Neural Processing Letters 16, 2002.

6. Jiang J., BP Neural Network Algorithm Optimized by Genetic Algorithm and Its
Simulation, International Journal of Computer Science Issues 10, 2013.

7. Slade, P. and Gedeon, T.D., 1993, June. “Bimodal distribution removal.” In the
International Workshop on Artificial Neural Networks. Springer, Berlin,
Heidelberg.

