
Compare the performance of traditional gradient descent method and

NEAT algorithm in the classification of rock lithology by generative

neural network

Yousong Zeng

School of Computer Science & Engineering
Australia National University

U6660070@anu.edu.au

Abstract In petroleum and geological exploration, the distinction of rock porosity is crucial.

Replacing expert systems with neural network models to distinguish porosity has become a future

development trend. This study compares the performance of the models generated by the gradient

descent method and the NEAT algorithm in related classification problems. The results show that the

traditional gradient descent algorithm is more suitable for supervised learning projects such as rock

porosity classification

Keywords: Core porosity, Neural network, Classification, Supervised Learning, NeuroEvolution of

Augmenting Topologies, Evolutionary algorithm

1. Introduction

In petroleum exploration, understanding the form and distribution of rock porosity in the formation is the basis for
successfully characterizing petroleum reservoirs. The traditional method is to use an expert system to evaluate the rock
porosity. Although this method has higher reliability, it is less efficient and consumes human resources. As a powerful
bionic modeling tool, neural network has been widely used in the field of machine learning and cognitive science with
the continuous innovation of hardware technology. Similarly, in geological prospecting, neural networks are often used
to replace some of the work of experts to save human resources. The advantage of a neural network is that it can reduce
a lot of expensive expert time by learning from the example data fed to it(Harry.S & Tamás D, 1993).

The emergence of evolutionary algorithms provides new ideas for training neural networks. The emergence of
evolutionary algorithms provides new ideas for training neural networks. Neuroevolution (NE) is the combination of
evolutionary algorithms and neural networks. He no longer uses traditional gradient descent methods to train models,
but uses natural selection of the survival of the fittest in genetic algorithms to screen out excellent models(K.O. Stanley
& R Miikkulainen, 2002). NeuroEvolution of Augmenting Topologies (NEAT) is a kind of NE algorithm.

The purpose of this study is to classify rock porosity by training neural network models using gradient descent and
NEAT methods, respectively, and compare the performance of the two methods.



2. Method

2.1 Pre-processing

This study used data to analyze the lithofacies in the strata and classify the demonstrated porosity. There are various
forms of sedimentary rock characteristic heterogeneity in clastic rock reservoirs, such as porosity. Understanding the
forms and spatial distribution of these heterogeneities is the basis for successfully characterizing petroleum reservoirs.
From a geological point of view, the anatomy of reservoir heterogeneity requires two main pieces of information: the
constituent lithofacies and their hydraulic properties and their internal structures (Tom. D, Dilip. T, Tao. L & Patrick, M,
2001). Due to the subjective analysis of the lithology that is mainly used for research, the data we used used six main
lithologies, as follows:

Table 1: Characters and attributes used for porosity classification (Tom. D, Dilip. T, Tao. L, Patrick, M, 2001).

It can be seen from the table that the six main attributes are discrete distributions rather than continuous. The data we
obtained is also one-hot processed data, which is not conducive to our subsequent neural network training and
interpretation, so I Pre-process the data to convert all attributes into numeric form.

For some attributes, there is an obvious sequence relationship, such as the attribute 'sorting', the category can obviously
form a chain: 'Poor–Poor-moderate–Moderate-poor–Moderate–Moderate-well–Well-moderate–Well' It is very
convenient to distribute it evenly to 0-1. For other attributes, such as "Roundness" in the data we used, the category of
this attribute has no sequence relationship, so they cannot be normalized to the range of 0-1 in a simple order. I used the
method proposed by Tom, Dilip, Tao and Patrick(2001). It is named Circular encoding, which is quantify the categories
of the attribute into two-dimensional vectors, distribute the categories evenly in two-dimensional coordinates, and then
encode and normalize them with sine and cosine Each category is represented as a vector in the range of 0-1.



Fig 1. (a)circular encoding of roundness. (b)normalize to vector.(Tom. D, Dilip. T, Tao. L, Patrick, M, 2001)

Since the source data does not have a label, I also need to classify the data according to porosity. According to Tom,
Dilip, Tao and Patrick(2001), the data should be divided into 4 classes, The basis for classification is: “Very poor”
(porosity < 5%), “Poor” (5% < porosity < 10%), “Fair” (10% < porosity < 15%), “Good” (porosity>15%).

After re-encoding the data, extracting valid data, and removing redundant items, the final data has 168 rows and 9
columns, which will be the final training data set.

2.2 Back-propagation neural network

A basic three-layer back-propagation neural network was established for classification, and gradient descent method
was used to train the model. In this three-layer network, there are 8 input neurons (sorting, Bioturbation1,
Bioturbation2, Grain size, Matrix, Roundness1, Roundness2, Lamina), which are the eight input attributes. Since there
are four final classification labels, and the cross-entropy loss function is selected to calculate the loss of the model more
accurately, the output neurons are determined to be four. The selection of the number of neurons in the hidden layer is
relatively complicated. Domy, Risanuri, and Indah (2018) believe that increasing the number of hidden layer neurons
will improve the accuracy of the model to a certain extent, but it will also reduce the generalization ability of the model,
which may lead to the risk of overfitting. Therefore, For the model, a reasonable choice of the number of hidden layer
neurons is crucial. Fanggang, Octavia, Chung and Jingwen (2016) pointed out that according to the kolmogorov-arnold
theorem, any n-ary continuous function can be expressed by the sum of a set of continuous functions, and the number of
summation functions does not exceed 2n + 1. This theorem just fits Our three-layer neural network, so we determine
that the number of hidden neurons is 2n +1 = 17. In order to avoid falling into the local optimum and effectively adjust
the gradient, the learning rate should be 0.01. The number of training epochs is 5000, which ensures that the network
can fully learn from the training data. The activation function of the hidden layer is the Sigmoid function.

2.3 NeuroEvolution of Augmenting Topology(NEAT)

In traditional NE approaches, a topology is chosen for the evolving networks before the experiment begins. Usually, the
network topology is a single hidden layer of neurons, with each hidden neuron connected to every network input and
every network output. Evolution searches the space of connection weights of this fullyconnected topology by allowing
high-performing networks to reproduce. The weight space is explored through the crossover of network weight vectors
and through the mutation of single networks’ weights. Thus, the goal of fixed-topology NE is to optimize the connection
weights that determine the functionality of a network (K.O. Stanley & R Miikkulainen, 2002). However, connection



weights are not the only aspect of neural networks that contribute to their behavior. Modifying the network structure has
been shown effective as part of supervised training (Chen et al., 1993). NEAT is based on this theory. In the genetic
algorithm, the carrier of the genetic information of the genome, the NEAT algorithm incorporates the topology and node
parameters of the neural network into the genetic information, which means that the algorithm not only optimizes the
parameters in the natural selection of the survival of the fittest, but also screens out the better. Head structure.

Table 2. Examples of node genomes in the NEAT

Node index Node 1 Node 2 Node 3 Node 4 Node 5

Node Genes Input node Input node Input node Hidden node Output Node

Table 3. Examples of connect genomes in the NEAT

Connect
index

In : 1

Out : 4

In : 2

Out : 4

In : 3

Out : 4

In : 2

Out : 5

In : 5

Out : 4

In : 1

Out : 5

Connect
Genes

Weight 0.7
Enabled

Weight -0.5
Disabled

Weight 0.5
Enabled

Weight 0.2
Enabled

Weight 0.4
Enabled

Weight 0.6
Enabled

Fig 2.A simple neural network generated from the genomes in Table 2 and Table 3

Table 2 and Table 3 show the two genomes in the NEAT algorithm, which distinguishes Nodes and connects. The figure
2 is a genotype to phenotype mapping basis on the genomes in Table 2 and Table 3. A genotype is depicted that
produces the shown phenotype. There are 3 input nodes, one hidden, and one output node, and seven connection
definitions, one of which is recurrent. The second gene is disabled, so the connection that it specifies (between nodes 2
and 4) is not expressed in the phenotype.



Fig 3. In the NEAT algorithm, the example of parent generates the child through crossover

In figure 3, Although Parent 1 and Parent 2 look different, their node numbers tell us which genes match up with which.
Even without any topological analysis, a new structure that combines the overlapping parts of the two parents as well as
their different parts can be created. Matching genes are inherited randomly, whereas disjoint genes (those that do not
match in the middle) and excess genes (those that do not match in the end) are inherited from the more fit parent. In this
case, equal fitnesses are assumed, so the disjoint and excess genes are also inherited randomly. The disabled genes may
become enabled again in future generations: there’s a preset chance that an inherited gene is disabled if it is disabled in
either parent.

In this experiment, the population of each generation of the NEAT algorithm is set to 200, and the generations is set to
5000. Since we are studying classification problems, I used cross entropy to calculate fitness. Eq.1 shows the principle
of cross entropy calculation.

(1)

The final result is trained according to the hyperparameters set above.

3. Result

3.1 Performance of BP Neural Network



After training with 5000 epochs, a bp neural network model that is finally used to classify porosity is trained.

Fig. 4. Trends in training accuracy and loss during training

It can be seen that loss is gradually decreasing and accuracy is gradually increasing, which shows that the model
gradually converges during training. It can be seen that although the final loss is still gradually declining, the accuracy
almost does not rise. In order to enhance the generalization ability of the model and reduce the possibility of over fitting,
the training should be stopped at this time.

Table 4. Confusion matrix of training set

Table 5. Confusion matrix of testing set

Table 4 and Table 5 show the confusion matrix of the model for the training set and test set, respectively. It can be seen
that the accuracy of the training set reaches 88.7%, while the accuracy of the test set is only 62.7%, and there is a



relatively large gap between the two. Although the accuracy of the test set fluctuates in the range of 55% -70% due to
the uncertainty of the neural network, there is always a relatively large deviation from the results of the test set.

3.2 Performance of NEAT

After a population of 200 generations in a population of 200 generations, the neural network generated by the NEAT
algorithm was finally obtained. The following is a schematic diagram of the neural network model.

Fig 5. Schematic diagram of neural network generated by NEAT algorithm. (In the net, if it is a solid line, it is Enable,
if it is a dashed line, it is Disable; the red line indicates the weight weight <= 0, the green indicates the weight> 0, and
the thickness of the line is related to the size.)

It can be seen from the figure that the neural network finally formed by the NEAT algorithm has 8 input nodes, 6 hidden
nodes, and 4 output neurons. Although there is no very neat structure, the model is the optimal model after natural
selection.

Table 6. confusion matrix of Training set

Table 7. Confusion matrix of Testing set



Table 4 and Table 5 show the confusion matrix of the model for the training set and test set, respectively. Table 4 and
Table 5 show the confusion matrix of the model for the training set and test set, respectively. Due to the high
randomness of the neural network generated by the NEAT algorithm, the accuracy of the training set fluctuates in the
range of 52% to 65% during multiple debugging, and the accuracy of the test set fluctuates in the range of 38% to 43%

4. Discussion

Through the analysis of the confusion matrix of BP neural network, I found that the model has a lower accuracy when
distinguishing the poor class, and it is easier to classify the samples of the Poor class as the very poor class. The reason
for this result may be that the rule when distinguishing data is to forcibly classify the porosity in the rock, which results
in samples with very similar porosity but just being divided into two different categories, which is somewhat misleading
to the model. For the problem that there is a certain difference in accuracy between the training set and the test set of the
BP neural network, after research, it may be because the training set has relatively few samples. In order to allow the
neural network to extract features more fully and learn more fully, I am in Increased the number of epochs during
training, resulting in over-fitting.

When using the NEAT algorithm to generate a neural network model, because the natural evolution of the population is
a long process, I spent a lot of time on training the model.

Fig 6. (a)Trend of species evolution in model training (Each color represents a species).

(b) Trend of overall fitness of the population

Fig 6 shows the evolution of various populations during the model training process. At the beginning of the training, the
model automatically generated 200 species, each species has two individuals, which avoids that some populations have
only a single individual, so that the offspring cannot be reproduced by genetic algorithm, and ensures that the genetic
algorithm can run smoothly. After 20 generations have been propagated, the algorithm screens the population. If certain
populations are stagnated, they are removed. This is the embodiment of natural selection in the algorithm, which
ensures that our model will eventually converge. After the 20th generation, the species diversity dropped sharply,
indicating that the population with higher fitness was retained, and the population with lower fitness was eliminated,
and the average utilization and optimal fitness of the population did not increase to the end, represent the convergence
of the model. It can be found from the picture that new species have been mutated and old species have been eliminated
during the reproduction process. In addition, after many times training to compare all models, I found that the structure

(a) (b)



of the neural network generated each time is very different. This is also the advantage of the NEAT algorithm, so that
we will not be limited by the neural network. The structure can search for the optimal solution in a larger solution space.

By analyzing the confusion matrix of the model generated by the NEAT algorithm, it is found that the model is very
inaccurate for the classification of the FR class, and the accuracy rate is only about 25%. There may be two reasons, one
is that the characteristics of the FR data itself are not obvious, and the second is due to the characteristics of the NEAT
algorithm. When calculating fitness, the overall fitness of the population is considered, which results in better overall
results but partial classification The model with poor performance survives. This can be modified by increasing the
fitness calculation method to increase the penalty for the local poor performance population.

From the above results, whether it is in the accuracy of the training set or the accuracy of the test set. The BP neural
network trained by gradient descent method is superior to the neural network trained by NEAT algorithm. Moreover, the
difference between the two types of development is also reflected in the efficiency of the algorithm. We performed 5000
epochs when training the BP neural network, and it took about 5 seconds to complete the model training. When using
the NEAT algorithm for 5000 generation iterations, it took more than 100 minutes to complete the training. This shows
that for projects that use rock equivalent data in rocks to classify rock porosity, the gradient down method is more
suitable than the NEAT algorithm.

5. Conclusion

The BP neural network implemented by the gradient descent method performs better than the model generated by the
NEAT algorithm in the classification of rock porosity. The advantage of BP neural network lies in its years of
experience and relatively high efficiency in the field of supervised learning. The advantage of the NEAT algorithm is
the flexible and changeable structure. This advantage is not fully reflected in the field of supervised learning, and it is
more suitable for the NEATmethod in the field of reinforcement learning with greater uncertainty.



Reference

[1] Chen, D., Giles, C. L., Sun, G. Z., Chen, H. H., Lee, Y. C., & Goudreau, M. W. (1993, March). Constructive
learning of recurrent neural networks. In IEEE International Conference on Neural Networks (pp. 1196-1201). IEEE.

[2] Féraud, R., & Clérot, F. (2002). A methodology to explain neural network classification. Neural Networks, 15(2),
237-246. doi:10.1016/S0893-6080(01)00127-7

[3] Gedeon, T. D., Tamhane, D., Lin, T., & Wong, P. M. (2001). Use of linguistic petrographical descriptions to
characterise core porosity: Contrasting approaches. Journal of Petroleum Science and Engineering, 31(2), 193-199.
doi:10.1016/S0920-4105(01)00130-9

[4] Kristomo, D., Hidayat, R., & Soesanti, I. (2018). Syllables sound signal classification using multi-layer perceptron
in varying number of hidden-layer and hidden-neuron. MATEC Web of Conferences, 154, 3015.
doi:10.1051/matecconf/201815403015

[5] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary
computation, 10(2), 99-127.

[6] Wang, F., Dobre, O. A., Chan, C., & Zhang, J. (2016). Fold-based kolmogorov-smirnov modulation classifier. IEEE
Signal Processing Letters, 23(7), 1003-1007. doi:10.1109/LSP.2016.2572666


