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Abstract. Automatic facial expression recognition is of great importance for the use of human-computer
interaction (HCI) in various applications. Due to the large variance in terms of head position, age range, and
so on, detecting and recognizing human facial expressions in realistic environments remains a challenging
task. In recent years, deep neural networks have started being used in this task and demonstrate state-
of-the-art performance. Here we propose a reliable framework for robust facial expression recognition.
The basic architecture for our framework is ResNet-18, in combination with a declarative Lp sphere/ball
projection layer and a bidirectional fully connected (FC) layer. The proposed framework also contains
data augmentation, voting mechanism, and a YOLO based face detection module. The performance of our
proposed framework is evaluated on a semi-natural static facial expression dataset Static Facial Expressions
in the Wild (SFEW), which contains over 800 images extracted from movies. Results show excellent
performance with a validation accuracy of 53.90% and a test accuracy of 57.24%, which indicates the
considerable potential of our framework.
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1 Introduction

Facial expression detection and recognition, i.e. the task of automatically perceiving and recognizing human
facial expressions based on vision inputs or other bio signals, is of great interest in the HCI research field.
Although facial expression recognition under lab-controlled environments has been well addressed [14, 19, 18, 16,
3], it remains a challenging problem to recognize unconstrained expressions captured in realistic environments.

The difficulty of this task is mainly caused by three factors. First, human facial expressions are dynamic in
nature [7], which makes the effectiveness of recognizing expressions via static vision data inherently worse than
video-based methods [2]. Second, the real-world environment, such as illumination, camera lens, would pose
an influence on recognition performance. Third, human appearance various from each other. The within-class
variability is usually large due to age, gender, etc. Some studies have shown the influence of these factors [4].

In recent years, researchers have focused more on recognize facial expressions in realistic environments.
The Static Facial Expressions in the Wild (SFEW) dataset [7] was proposed, aiming to simulate the complex
real-world environment. Over 800 images were extracted from 37 movies and it contains a total of 95 subjects.
This real-world environment really poses a significant challenge to existing approaches. A number of methods
which performs great on lad-controlled datasets like JAFFE [17], PIE [25], and MMI [22], yield significant lower
performance on this dataset [7].

To achieve good recognition performance, a method that robust to the influence factors is needed. Here,
we introduce a novel neural network architecture for facial expression recognition, the Bidirectional Residual
Declarative Network, which is constructed based on ResNet [10] then improved by ideas distilled from deep
declarative networks [8] and bidirectional neural networks [20], and it demonstrates competitive performance.
In addition, we describe a modeling framework consisting of data augmentation method, voting mechanism,
and a YOLO based face detection module, which behaves well when the dataset doesn’t contain enough images.
The performance of our framework was tested on the SFEW dataset.

This article is organized as follows. In section 2, we provide details of our proposed framework and discuss
technique details on implementation. In section 3, we give an experimental analysis of our framework. Section
5 presents the performance evaluation of our framework as well as comparison with methods proposed by other
researchers on the SFEW dataset. Finally, we would discuss the limitations of our work and future work, and
then give a conclusion about our contribution.

2 Framework

In this section, we introduce the architecture of the Bidirectional Residual Declarative Network in full detail
(Section 3.1) as well as the data augmentation methodology (Section 3.2), the face detection module (Section
3.3), and voting mechanism (Section 3.4).

2.1 Architecture

ResNet We use the ResNet-18 as the backbone architecture. The ResNet is first proposed in [10], aiming to
ease the training process of deep neural networks by introducing residual connections. The original architecture
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as well as its variations have been well examined on visual recognition tasks like the ImageNet Classification
challenge [24], CIFAR-10 dataset, and achieved better performance compared with previous architectures like
AlexNet [11, 26, 15]. Therefore, we build our network upon ResNet-18. The structure of our network is shown
in Fig. 1.

Fig. 1. Structure of Bidirectional Residual Declarative Network. The second line of each block denotes the output
dimension.

As shown in Fig. 1, for an image input, it would first be downsampled by first a convolution layer and then
a max pooling layer. The output of the pooling layer would then be sent into the ResBlocks. We build the
four ResBlocks according to [10]. The dimension of the last ResBlock’ s output is (512, 7, 7). So, we first adopt
average pooling and then flatten the output to change it into a vector of length 512. This vector would then
be normalized by applying Lp sphere/ball projection, and we changed the original fully connected layer into a
bidirectional layer to further improve the robustness and generalization ability. The bidirectional layer would
finally yield the prediction.

After each convolution and before activation, we adopt batch normalization (BN) [12]. Besides, BN would be
used before the projection layer. Stochastic gradient descent (SGD) with a mini-batch size of 256 is our choice
for optimization. The learning rate starts from 0.1 and would be adjusted by dividing it by 10 every 30 epochs.
We also apply a 0.0001 weight decay rate and 0.9 momentum rate.

With regard to the model complexity, our proposed network has a total of 11,180,103 learnable parameters
and the parameter size is about 42 MB.

Projection Layer Proper regularization is critical for speeding up training and improving generalization
performance [21]. Rather than use some conventional regularization methods, we take advantage of the new
development in the deep learning field, namely deep declarative networks [8], and introduce Lp sphere/ball
projection into our network.

Conventional approaches toward regularization would do the operation that for x ∈ Rn 7→ y ∈ Rn, we have

y =
1

‖x‖p
x (1)

where ‖·‖p denotes the Lp-norm.
Instead of doing regularization in this way, we apply the declarative approach, which can be generalized as

yp ∈ argminu∈Rn

1

2
‖u− x‖22, subject to ‖u‖p = r (2)

yp ∈ argminu∈Rn

1

2
‖u− x‖22, subject to ‖u‖p < r (3)

for Lp-sphere projection and Lp-ball projection respectively. r denote the radius of the sphere or ball. We set it
to 1 in our network, which could be interpreted as projecting with a unit sphere or ball constrain.

In terms of the projection layer implementation, we use the ddn library [9], and then integrate it into our
network by adding it before the FC layer. For the choice of projection type, we tested L1, L2, L∞-sphere/ball
projection, and decided to apply the L2-sphere projection in our final network to achieve the best performance.

Bidirectional FC Layer The bidirectional fully connected layer is derived from the idea of bidirectional
neural networks (BDNN) [20], which is proposed to enable neural networks to remember input patterns as well
as output vectors. It is demonstrated in the original work that the BDNNs perform well on tasks such as finding
cluster centers and class prototypes. Due to its ability of learning input patterns from outputs, we could use it
to reduce the network generalization error and thus improve the robustness of our model.

Fig. 2 shows the topology of conventional neural networks (NN) and BDNNs. The difference between these
two topologies is that the training process in BDNNs is bidirectional, i.e. the error would not only backpropagate
from right to left but also left to right. To implement such a network, we construct a symmetric network for
the input-to-output network, which means the number of output and input neural is exchanged. The weights of
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Fig. 2. Topology of NNs (Left) and BDNNs (Right)

these two networks are associated by shared memory. Before training the left-to-right network, we would first
use the output to predict the input and backpropagate the error, and then update the shared weights.

For our task, we set the input and output neural size as 512 and 7 respectively, and thus the symmetric
would use a 7-D vector to predict the pattern of a 512-D vector. No hidden layers are added to make it consistent
with the ResNet backbone.

2.2 Data Augmentation

Machine learning algorithms often suffer from the overfitting problem, and this is more significant for deep
learning especially when the dataset is small, and the network is deep. To address this problem, we rely on data
augmentation so that, in each iteration, the algorithm never sees the exact same set of images

The face detector would crop a 256× 256 region in a source image corresponding to the face region. We first
horizontally flip it to create a mirror image and then expand these two images’ width and height by 2 times
respectively. By applying this augmentation strategy, we expand the original dataset by 6 times. This process is
to mimic viewing subjects from different angles. As for training, the required input size is 224× 224. We would
randomly crop such a region from the preprocessed images with the per-pixel mean subtracted . This allows
our model to learn from not only the whole face but also a partial region.

2.3 Face Detection

To learning meaningful representations of facial expressions, locating faces is the first step. We use the library
faced as our face detection module. When setting the recognition threshold to 0.6, it yields 66 images that do
not contain faces, which is 7.56% of the whole cropped images. Therefore, we can rely on these detected faces to
train our network. We can observe a significant improvement in recognition accuracy as the network trained by
detected faces is over 45% while the same network but trained with raw images only has an accuracy of around
20%.

The faced library would do face detection in two stages. At stage one, a custom fully convolutional neural
network (FCNN) implemented based on YOLO[23] would take a 288×288 RGB image and outputs a 9×9 grid
where each cell can predict bounding boxes and the probability of one face. [13] At stage two, a convolutional
neural network (CNN) would be used to take the face-containing rectangle and predict the face bounding box.
This module is trained on the WIDER FACE dataset [27]. In the end, we can get bounding boxes of a face and
the probability of how likely it is really a face.

2.4 Voting Mechanism

There are many scenarios for the output of the face detect module, i.e. faces detected, partial face detected,
non-face detected, and their combinations. Fig. 3 illustrates the situations where multiple possible faces are
detected. Although they are different images, each pair is cropped from the same image. This is due to the
complexity of the real-world environment and the limit of our face detection module. To address this issue and
take advantage of face probability, we introduce the voting mechanism to our framework.

Fig. 3. Faces detected. (a) partial face (left) (b)non face (middle) (c) desired face (right)

When detecting faces, the detection module would also give the probability of one face while our network
would yield a 7-D vector as the probability of each expression. When we have more than one detected faces in
an image, instead of taking the image with the highest probability as the expression prediction evidence, we
would average the 7-D vector weighted by the face probability.
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3 Experimental Analysis

In this section, we provide an experimental analysis of the Bidirectional Residual Declarative Network architec-
ture as well as the voting mechanism.

3.1 Evaluation Method

To evaluate the proposed architecture, we constructed the confusion matrix for prediction results and apply
several accuracy metrics such as accuracy, precision, and recall:

accuracy =
TP + TN

TP + TN + FP + FN
(4)

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

where TP , TN , FP , FP are the true positive, true negative, false positive, and false negative classifications,
respectively. Among them, accuracy would be our principal performance indicator since its simplicity, and we
would also consider the top 3 classification accuracy as some expressions are similar and even hard for humans
to correctly identify.

We didn’t adopt cross-validation in our evaluation as this is expensive considering training such a deep
neural network would take over 1 hour on an RTX2070 platform. Instead, we split the dataset into train, test,
and validation sets. The performance results in section 3.2 are evaluated on the test set, and we would use the
validation set as the final evaluation of our model’s performance.

3.2 Ablation Study

In this section, we design two experiments to evaluate the performance of the projection layer and the bidirec-
tional FC layer. We use the SFEW dataset and this is also the dataset that our framework would finally be
evaluated on. In the first experiment, we exam the performance improvement that the projection layer gives us
as well as the effect of different projection types. In the second experiment, we would test the bidirectional FC
layer’s performance and its influence to different projection types. We didn’t apply voting in both experiments.
Therefore, we manual deleted these non-face images in our test set.

Projection Layer Performance We first test the projection layers, and therefore, we use a conventional
NN as the FC layer instead of a bidirectional FC layer. As discussed in Section 3.1, we adopted six different
projections, which are L1-sphere (L1S), L1-ball (L1B), L2-sphere (L2S), L2-ball (L2B),L∞-sphere (LInfS),L∞-
ball(LInfB), respectively, and combined with a network without projection, we trained 7 networks in total,
aiming to compare their effect in terms of classification performance. The result is shown in Fig. 4
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Fig. 4. Model Performance by Epoch

From Fig. 4, we can observe that the network with L2S projection yields the best performance in both
top-1 accuracy and mAP, and L2B projection is the best choice if we regard the top-3 accuracy as the most
important metric. The difference between networks with the projection layer and without the projection layer is
significant. We can observe a nearly 10% top-1 accuracy improvement after adding the L2S projection. However,
some projection types, such as L1S and L1B, would give a similar performance with plain ResNet-18, or even
worse performance.

The difference in convergence performance is also shown in this figure. Networks with projection would
generally have a faster convergence speed. However, this difference is not obverse. In addition, declarative layers
(the projection layer) are more computationally expensive compared with conventional layers, and some of them
even do have closed-form solutions, such as (LInfS) [8]. Therefore, the convergence advantage is negligible.
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Bidirectional FC Layer Performance Our second ablation study aims to explore the effect of the bidi-
rectional FC layer. Therefore, we conduct experiments to test the performance of our architecture with and
without the bidirectional FC layer. Table. 1 shows the network performance on the test set after training for
125 epoch.

Table. 1 Performance of Models with and without Bidirectional FC Layer.
Top-1 Top-3 mAP

FC BDFC FC BDFC FC BDFC
None 50.72 47.82 73.91 71.73 53.18 44.70
L1S 48.55 43.47 73.18 71.01 48.71 43.90
L1B 47.10 45.65 64.49 66.66 46.83 52.70
L2S 57.97 57.24 73.91 77.53 63.85 64.61
L2B 53.62 57.24 76.81 75.36 61.25 64.89
LInfS 53.62 52.89 72.46 73.91 58.21 57.68
LInfB 51.44 46.37 73.91 71.73 57.90 53.61

The results show that different projection layers behave differently with the bidirectional FC layer. The
bidirectional FC layer significantly reduced the performance for networks with L1-sphere/ball projection layers
and the network without projection. It yields a similar performance for networks with L∞-sphere/ball projection
except for the top-1 accuracy for the model with L∞-ball projection. However, we can observe a performance
improvement for networks with L2-sphere/ball projection. For the model with L2-sphere projection, the Top-3
accuracy and mAP improved a lot despite a slight decrease in terms of Top-1 accuracy.

This is consistent with the theory that BDNNs can learn for both input and output and thus have a better
generalization ability.

3.3 Voting Mechanism

We tested the performance of the voting mechanism on the validation set. The prediction accuracy for the
network without voting is 52.78% and it is 53.90% for the network with voting. The network contains the L2S
projection and the bidirectional FC layer. We can observe that both accuracies decreased significantly on the
validation. However, this is normal as we did a lot of hyperparameter tuning during training. Although it is
not a huge improvement, the voting mechanism indeed improved the performance. The reason is that voting
would only happen when the face detector finds multiple faces in one image. However, for the majority, the
detector would only detect and crop one face region. Moreover, voting relies on the face probability given by
the detector, which further increases the uncertainty. Therefore, we cannot hope the voting mechanism brings
significant improvement in our framework.

4 Result & Discussion

We present and discuss our model’s performance on the validation set of SFEW dataset. We would also compare
it with approaches proposed by other researcher to determine whether it is a competitive framework for the
robust facial expression recognition task.

4.1 Performance
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Fig. 5. Confusion Matrix of our Framework on Validation Set.

We present the confusion matrix in Fig. 5. The color of each block indicates the recall of that class. According
to this figure, the recall of Angry facial expression is the highest. The model misunderstands a number of natural
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and sad expression. However, for some images of these two classes, it is even hard for humans to identify the
correct emotion.

4.2 Comparison

We compare our proposed framework with other researchers’ approaches. The performance of the first approach
is the SFEW baseline provided at [1]. They detect faces using Mixture of Pictorial Structures and then compute
the Pyramid of Histogram of Gradients and Local Phase Quantisation features for the aligned faces. A support
vector machine (SVM) was trained on the vector computed from feature fusion. The second approach is proposed
in [6]. They proposed a new feature descriptor, namely Histogram of Oriented Gradients from Three Orthogonal
Planes (HOG TOP), and they adopt Multiple Kernel Learning (MKL) to find an optimal feature fusion. The
classifier for their approach is also a SVM but with multiple kernels.

Table. 2 Performance Comparison with Other Approaches.
SFEW Baseline MKL[6] Our Method

Test 39.33% 45.21% 57.24%
Val 36.08% 40.21% 53.90%

The results of all the approaches are shown in Table. 2. We can observe that our approach has a significantly
better performance compared with the SFEW baseline, and surpass the MKL approach by 13% in terms of
the validation performance. This indicates that our framework has a great potential on the real-world facial
expression recognition task.

5 Limitation & Future Work

We aim to simulate the real-world environment and exam the performance of our proposed framework. However,
images in this dataset are still not in the real world. For example, movies may use the illumination to reflect
a character’s emotion, which means a person in a dark environment is more likely to have a negative emotion
and a bright environment may indicate the person is happy. Therefore, future work can improve our work by
using a dataset that more close to the real world.

Future work could also extend our work by generalizing the voting mechanism to other components. For
example, the face detector can be improved by introducing other framework based detectors to the detection
process. The detected faces could either be an average of these detectors or from the detector with the highest
confidence.

Fine-tuning on a pre-trained model is another approach that can possibly improve our model’s performance.
Although we applied data augmentation, the dataset is still not sufficient for a deep neural network. Fine-tuning
a model pre-trained on a bigger dataset like the FER dataset [5] would be a good method to avoid overfitting
and increase the generalization ability.

6 Conclusion

In this paper, we present a new neural network architecture for facial expression recognition, which is based
on ResNet-18 and combined with a declarative projection layer and a bidirectional FC layer. The proposed
framework also includes a data augmentation method, a face detection module, and a voting mechanism. We
examined the projection layer as well as the bidirectional FC layer by an ablation study, and proved that they
indeed improved the backbone network. With a combination of these techniques, we achieved a competitive
performance with 57.24% test accuracy and 53.90% validation accuracy, which demonstrates the proposed
framework is reliable and robust for facial expression recognition in a real-world environment.
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