
Comparison of Maximum Likelihood Classification Method with Artificial

Neural Network on Static Facial Expressions in the Wild Dataset

Dingyi Wang

ResearchSchool of Computer Science, Australian National University, Australia
u6471736@anu.edu.au

Abstract. Human facial expression classification is an emerging topic in both academic and industrial fields.

Researchers used several methods to strive for higher accuracy, among which statistical methods and neural networks

are the most widely used ones. We implement a statistical method, which is maximum likelihood classification, and a

modern artificial neural network on a static facial expression database called Static Facial Expressions in the Wild

(SFEW) [1], to compare their performances. The result shows both methods perform worse than the support vector

machine method used in SFEW research in terms of accuracy, we conclude that maximum likelihood is not able to find

the pattern on such datasets, and the plain neural network lacks enough data. We extend the neural network to a

convolutional neural network (CNN) using the ResNet [20] basic blocks on the original images of SFEW and the result

is comparable to the original performance. More data and training and the use of a deeper detection-based CNN

classification are potential solutions for future improvements.

Keywords: Facial expression classification, maximum likelihood classification, artificial neural network,

convolutional neural network

1 Introduction

Identifying what human expressions are in images and videos is an attracting topic in both research study and industry

area. Researchers applied different techniques [3][4] to solve this question, and have shown that using a proper method

to analyze the data is critical to the expected accuracy of the classification.

The Static Facial Expressions in the Wild (SFEW) [1] dataset we used contains 675 lines of 10 static data which is

consisted with 2 high quality image features' top 5 principal component analysis (PCA) components, each along with a

label indicates one of seven emotions. The distribution of the data is as Table 1 shows. These data were collected by

selecting frames from movies which are closer to real world environment expressions than the photos took in the labs

such as JAFFE (The Japanese Female Facial Expression) datasets [18]. With SFEW, we can define a supervised

classification problem for which we would like to use these 10 PCA components as inputs to predict the emotion label

we will get.

Table 1. Distribution of the SFEW dataset.

Emotion Number

Anger 100

Disgust 75

Fear 100

Happy 100

Sad 100

Surprise 100

Neutral 100

PCA is a useful tool for data dimension reduction and feature extraction and is widely used in image-based

detection/classification studies [2, 5]. By finding the basis vectors (principle components) of a rebuilt subspace of a face

space which has better ability to describe the face images, PCA allows us to use these basis vectors which have maximum

variance to the original space as extracted features and minimize the reconstruction error.

To see how methods differ on such a PCA-based dataset, we choose both a conventional statistic method which is

maximum likelihood classification, and simple neural network method for comparison.

Maximum likelihood classification was widely used for pattern recognition in the previous years, especially for image

classification in the field of remote sensing [6, 7, 8]. It is based on multivariate normal distribution theory and able to

identify similarities between individual measurements and predefined standards.

Another approach is to use neural networks. By saying neural networks, we are talking about back-propagation (BP)

neural networks, which are currently the most commonly used neural network [10] and has been widely in regression,

classification, detection problems and etc. [11, 12, 13]. Neural networks are inspired by how human brain works, and they

typically consist nodes (input nodes and neurons), synaptic connections and functional connections [10]. In the learning

2 Dingyi Wang

phase, the connection weights are adjusted while in the working phase, new inputs are propagated on the fixed weights

to get result.

A deep convolutional neural network (CNN) is also introduced and tested on the original image data of SFEW as an

extension of the neural network experiment. Since AlexNet [13] won the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC12) on ImageNet dataset [24] in 2012, CNNs have been widely used in image classification [19, 20].

Using convolutional and pooling layers, CNNs succeed in this field with their capability of joint feature and classifier

learning [21]. We are curious to see how deeper neural networks can achieve on this dataset.

We implement all the methods to demonstrate the differences between their performances on the dataset. We also use

the original experimental result provided by the SFEW paper as a baseline for comparison, which applied a support vector

machine method.

2 Methods

2.1 Maximum Likelihood Classification

Maximum likelihood classification was widely used for pattern recognition in the previous years, especially for image

classification in the field of remote sensing [6, 7, 8]. It is based on multivariate normal distribution theory and able to

identify similarities between individual measurements and predefined standards.

Consider one observation 𝑥 consists 𝑝 variables (dimensions or channels), then by multivariate normal statistical

theory, assuming equal prior probabilities, the probability of 𝑥 will occur under it belongs to class 𝑘 is given by [6]:

𝑃(𝑥|𝑘) =
1

√(2𝜋)𝑝|∑𝑘|
⋅ 𝑒−

1

2
(𝑥−𝜇𝑘)𝑇∑𝑘

−1(𝑥−𝜇𝑘)
, (1)

where 𝜇𝑘 is the observed (training) mean vector of class 𝑘, and ∑𝑘 is the observed (training) variance-covariance

matrix of class 𝑘. The term (𝑥 − 𝜇𝑘)𝑇∑𝑘
−1(𝑥 − 𝜇𝑘) can be considered as the Mahalanobis distance between the vector

and the centroid of a specific class [9]. We can then use expression (1) to calculate the probability of 𝑥 is each of k

classes. As the log of the probability function is monotonic increasing, we would use the log form of expression (1),

which gives us:

ln(𝑃(𝑥|𝑘)) = −
1

2
𝑝𝑙𝑛(2𝜋) −

1

2
ln|∑𝑘| −

1

2
(𝑥 − 𝜇𝑘)𝑇∑𝑘

−1(𝑥 − 𝜇𝑘), (2)

and we can simply compare the values of this equation for each class to make decisions.

In this study, we will implement the equation (2) with a Python program, the 10 PCA components are considered as

the measurements of observations and the emotion labels are the expected classes. We let the classifier fit with the train

data and predict on the test data.

2.2 Neural Network

2.2.1 Simple BP Neural Network

BP neural networks usually have multiple layers of nodes, including an input layer, one or more hidden neuron layers and

an output layer. The algorithm will run a cycle of forward propagation and backward propagation during the learning

phase [10]. The work flow includes:

1. Initialize weights.

2. Feed input X & target output T.

3. Calculate output Y.

4. Calculate the cost with proper loss function and its gradients.

5. Back propagate the gradients using the chain rule from output layer to input layer.

6. Update weights.

7. Repeat until the end of the training.

For this experiment, we will use Python and PyTorch to construct a simple multi-layer BP neural network with 1 to 2

hidden layers, all with Sigmod activation function and Adam optimizer [14], which is a well-known gradient-based

optimization of stochastic objective functions, instead of classical stochastic gradient descent (SGD) for faster learning

in a relatively less training iterations to avoid overfitting. As this is a classification problem, we choose cross entropy loss

as our loss function [15]. A multi-class cross entropy loss is given by:

Comparison of Maximum Likelihood Classification Method

with Artificial Neural Network

on Static Facial Expressions in the Wild Dataset 3

𝐿(�̂�, 𝑦) = − ∑ 𝑦(𝑘)𝐾
𝑘 log

𝑒�̂�(𝑘)

∑ �̂��̂�(𝑗)𝐾
𝑗=1

,
(3)

where k is the class, �̂� is the output and 𝑦 is the target. Different numbers of neurons were applied to increase the

model’s capacity for higher accuracy.

2.2.2 Convolutional Neural Network

The majority parts of CNNs are layers called convolution layers which filter their layer inputs and find useful features

within those inputs [22]. We customize the parameters of filters which consists neurons and apply the filter kernels to

specific areas of the input data, such process is called convolution, with which we can produce feature maps. There are

also pooling layers which produce summary statistic of the output from the previous convolutional layer and can help

learned representation to be invariant to small translations of input. Optimization techniques such as Dropout [13] and

Batch Normalisation[23] are often used to avoid overfitting or accelerate convergence.

In this experiment, we adopt the technique of ResNet [20], which is a well-known image classification network to

build our CNN. The core of ResNet is to use “residual blocks” (Fig.1) to address the problem of performance decreases

when the network gets deeper (also referred as “degradation”). Assume the deeper output is ℋ(𝑥), it tries to achieve

ℋ(𝒙) = ℱ(𝑥) + 𝑥 when we want to use map shallow output 𝑥 to ℋ(𝒙) using mapping ℱ(𝒙), which is based on the

idea that it will be easier to optimize the network to achieve at worst the same performance when the original output is

optimal. ResNet implements such idea by applying “shortcut connections” for which shallow outputs are directly added

to the outputs after one or more layers to perform identity mapping.

Fig. 1. Residual basic building block

Due to our limited computational resources, we implement a much shallower version of ResNet, which uses 4 basic

building blocks of ResNet, and the structure of our CNN is shown in Fig.2:

Fig. 2. CNN structure

where the numbers in the convolution filter box represent filter numbers, and “/2” represents downsampling realized

by using layers with a stride of 2. The identity shortcut’s downsampling is done by 1x1 convolutions with a stride of 2.

After each convolution, we perform batch normalization and ReLU activation. The last layer is a fully-connected layer.

We still use a cross-entropy loss and Adam optimizer, but as the inputs and the network structure are different, we

need to adjust part the training process. The original images are resized to 224x224 as inputs, and are fed into the network

4 Dingyi Wang

with 40 training epochs and a batch size of 90 as our graphic card is not able to support computations with full batch

training.

2.3 Test Method

As SFEW doesn’t have separate datasets for training and testing, we would like to apply K-fold cross validation method

[16] for our testing phase. It’s a good way to evaluate the model’s performance on unavailable data and to prove the

model is not overfitting. For both classification method, we randomly divide the original dataset into 5 equal-sized

partitions, of which one is used for testing, and others are used for training at a time, the final accuracy is produced by

calculating the mean accuracy of these k-time experiments.

3 Result and Discussion

The k-fold accuracy result of maximum likelihood classifier (MLC) is shown in Fig.3 and Fig.4, and the experiment result

of our simple neural network is shown is Table 2 and 3. To compare with, the original SFEW paper’s SVM classifier got

an accuracy of 43.71% with the first 5 PCA components and 46.28% with the last 5 PCA components on the seven-

expression experiment [1].

Both of these implementations are not able to match the original accuracy, while the reasons could be different. The

result of MLC method shows that although the accuracy of MLC on SFEW is relatively low, it maintains in a relatively

consistent way both for training and testing data. We believe the reason why MLC misperformed in this experiment is

that it depends more on the distribution of the training data, while the SFEW data doesn’t really comply a multivariate

normal distribution which is what MLC theory is based on [6], as SFEW was collected from different scenes of different

movies. It is the characteristic of the method that makes MLC failed to find the pattern inside the data, and thus not

capable to solve this problem.

On the other hand, the unsatisfiable result of the plain neural network has more complex reasons, although it still

achieves a higher accuracythan the MLC. We can notice that throughout the experiment, while the training accuracy

increases as the epochs increases, the test accuracy quickly drops when the model trained for too many epochs. Even

though we add more neurons and layers to the network, the model still quickly demonstrates overfitting. A major issue

of BP algorithms is the local minimum [10], but it is clear that we haven’t reached that point. We argue that this is because

the dataset is not big enough or complete enough for the network to find the correlation between the features and the

Fig. 3. Training accuracy of MLC

Fig. 4. Testing accuracy of MLC

Comparison of Maximum Likelihood Classification Method

with Artificial Neural Network

on Static Facial Expressions in the Wild Dataset 5

Table 2. Average 5-fold loss with different hyper-parameters of plain neural network.

Settings 2000 epochs 4000 epochs 6000 epochs 8000 epochs 10000 epochs

One hidden layer

with 10 neurons

1.8628 1.8135 1.7955 1.7675 1.7390

One hidden layer

with 20 neurons

1.8334 1.8030 1.7800 1.7419 1.6964

Two hidden layers

with 10 and 20

neurons

1.8473 1.7682 1.6890 1.5623 1.4363

Table 3. Average 5-fold accuracy with different hyper-parameters of plain neural network.

Settings 2000 epochs 4000 epochs 6000 epochs 8000 epochs 10000 epochs

One hidden layer

with 10 neurons

22.38% 22.54% 25.52% 24.33% 23.28%

One hidden layer

with 20 neurons

23.28% 24.63% 24.93% 25.67% 24.18%

Two hidden layers

with 10 and 20

neurons

25.67% 23.54% 24.63% 23.28% 22.54%

expressions, nor to complete generalization. In contrast, it may also be another proof that SVMs have better generalization

ability especially when provided with limited training data [17].

Other than the accuracy, a major difference that can be noticed is the efficiency. MLC can complete 10 iterations of

both training (fitting) phase and predict phase in less than 1s on an Intel® Core™ i7-8750H platform, while our neural

network requires far more than time than that of MLC especially when training for large epochs. This can be explained

by how these methods works. Assuming we have 𝑁 training examples 𝑥 of 𝑘 classes for both methods. Provided that

we are using a simple 2-layer BP neural network with respectively 𝑁1 and 𝑁2 hidden neurons and 𝑘 output nodes,

then in one epoch of training, the computer needs to execute the following operations [10]:

1. Calculate Outputs 𝑌(𝑦1, 𝑦2, … , 𝑦k):

ℎ𝑗
𝐼 = 𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖

𝑁

𝑖=0

) , 0 ≤ 𝑗 ≤ 𝑁1

(4)

ℎ𝑘
𝐼𝐼 = 𝑓 (∑ 𝑤𝑗𝑘

𝐼 ℎ𝑗
𝐼

𝑁1

𝑗=0

) , 0 ≤ 𝑘 ≤ 𝑁2

(5)

𝑦𝑙 = f (∑ 𝑤𝑘𝑙
𝐼𝐼 ℎ𝑘

𝐼𝐼

𝑁2

𝑘=0

) , 0 ≤ 𝑙 ≤ 𝑘
(6)

2. Calculate cost with loss function.

3. Update weights with back propagated gradients with learning rate 0 < 𝜂 < 1:

𝑤𝑘𝑙(𝑡 + 1) = 𝑤𝑘𝑙(𝑡) + 𝜂 (−
𝑑𝐿

𝑑𝑤𝑘𝑙

)
(7)

𝑤𝑗𝑘(𝑡 + 1) = 𝑤𝑗𝑘(𝑡) + 𝜂 (−
𝑑𝐿

𝑑𝑤𝑗𝑘

)
(8)

While for MLC, it only needs to calculate 𝑘 means vectors and covariance matrixes in the fitting phase, and do 𝑘

times of matrix multiplication (𝑥 − 𝜇𝑘)𝑇∑𝑘
−1(𝑥 − 𝜇𝑘) in the predicting phase. The computational cost gap caused the

execution-time difference, which is enlarged by the number difference of training epochs.

6 Dingyi Wang

After applying CNN on the image-based dataset, although it’s still not enough to say that the network can make

trustworthy predictions, we can see a noticeable increase in terms of accuracy:

Fig. 5. Average loss of 5-fold validation process of CNN

Fig. 6. Average accuracy of 5-fold validation process of CNN

Different with the plain neural network, we can see as the loss decreases, the accuracy of the CNN predictions increases

for a long period of time instead of quickly falls into overfitting. Except for a much bigger network structure, the reason

that CNNs can perform better in such computer vision problems is their capability of joint feature and classifier learning

[21].

4 Conclusion and Future Work

Using SFEW dataset, we have implemented two kinds of methods for facial expression classification. The result

demonstrated that both of the methods are not suitable for perform classification task on this dataset. We analyzed the

result and proposed possible reasons: MLC failed for not being able to extract the statistical features behind the data,

while neural network requires more data to complete a generalized training. Our experiment process also indicates the

characteristics of these two methods, that neural networks can achieve higher accuracy with a significantly longer training

time, and MLC is useful for more statistical connected and time-efficient tasks.

We also extended our experiment on neural networks by implementing a CNN to train and test on the original image-

based dataset of SFEW, in which the CNN performed better in terms of accuracy despite using this relatively small dataset.

It shows the ability of CNNs on pattern recognition, and demonstrated the potential of CNNs on facial expression

classification tasks given enough data and computational resources.

Our experiment also has some limitations. We are not able to try out all possible hyperparameters for neural networks,

and both of our NN structures are relatively simple. Further improvements can be using a larger dataset for training the

neural networks, and design a more complex neural network that can first detect the faces [25] to get bounding boxes and

then perform classifications on the selected areas of images.

References

1. Dhall, A., Goecke, R., Lucey, S., Gedeon, T. Static facial expressions in tough conditions: Data, evaluation protocol and

benchmark. In: 1st IEEE International Workshop on Benchmarking Facial Image Analysis Technologies BeFIT, ICCV2011.

(2011).

2. Sahoolizadeh, A.H., Heidari, B.Z., Dehghani, C.H.: A new face recognition method using PCA, LDA and neural network.

International Journal of Computer Science and Engineering, vol.2(4), pp.218-223. (2008).

3. Zhang, T., Zheng, W., Cui, Z., Zong, Y., Yan, J. & Yan, K.: A Deep Neural Network-Driven Feature Learning Method for Multi-

view Facial Expression Recognition. IEEE Transactions on Multimedia, vol.18, pp.2528-2536. (2016).

4. De Campos, C.P., Tong, Y., Ji, Q.: Constrained maximum likelihood learning of Bayesian networks for facial action recognition.

In European Conference on Computer Vision, pp. 168-181. Springer, Berlin, Heidelberg. (2008).

Comparison of Maximum Likelihood Classification Method

with Artificial Neural Network

on Static Facial Expressions in the Wild Dataset 7

5. Lin DT: Facial expression classification using PCA and hierarchical radial basis function network. Journal of information science

and engineering, vol.22(5), pp.1033-46. (2006).

6. Strahler, A. H.: The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sensing of

Environment, vol.10, pp.135-163. (1980).

7. Miles, N. W., Morris, G. M. Maximum-Likelihood Image Classification. Proc.SPIE. (1988).

8. Milne, L. K., Gedeon, T. D., Skidmore, A. K.: Classifying Dry Sclerophyll Forest from Augmented Satellite Data: Comparing

Neural Network, Decision Tree & Maximum Likelihood. training, vol.109(81), pp.0. (1995).

9. Foody, G. M., Campbell, N. A., Trodd, N. M., Wood, T. F.: Derivation and applications of probabilistic measures of class

membership from the maximum-likelihood classification. Photogrammetric engineering and remote sensing, vol.58(9), pp.1335-

1341. (1992).

10. Zhang, W.: Computational ecology: Artificial neural networks and their applications. World Scientific Publishing Co Pte Ltd.

(2010)

11. Specht, D. F.: A general regression neural network. IEEE transactions on neural networks, 2(6), pp.568-576. (1991).

12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 779-788. (2016).

13. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In Advances in

neural information processing systems pp. 1097-1105. (2012).

14. Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980. (2014).

15. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In Advances in neural

information processing systems, pp. 8778-8788. (2018).

16. Stone, M.: Cross‐validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B

(Methodological), vol.36(2), pp.111-133. (1974).

17. Shao, Y., Lunetta, R. S.: Comparison of support vector machine, neural network, and CART algorithms for the land-cover

classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, vol.70, pp.78-87. (2012)

18. M. J. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba.: Coding facial expressions with gabor wavelets. In Proceedings of the IEEE

International Conference on Automatic Face Gesture Recognition and Workshops, FG’98, (1998).

19. Christian S., Wei L., Yangqing J., Pierre S., Scott R., Dragomir A., Dumitru E., Vincent V., Andrew R.: Going deeper with

convolutions. arXiv: 1409.4842. (2014).

20. Kaiming H., Xiangyu Z., Shaoqing R., Jian S.: Deep residual learning for image recognition. arXiv:1412.6980. (2014).

21. Jiuxiang G., Zhenhua W., Jason K., Lianyang M., Amir S., Bing S., Ting L., Xingxing W., Li W., Gang W., Jianfei C., Tsuhan

C.: Recent Advances in Convolutional Neural Networks. arXiv: 1512.07108. (2015).

22. Iffat Z., Giounona T., Richard B., Nimesh P., Leonardo A.: Hands-On Convolutional Neural Networks with TensorFlow: Solve

computer vision problems with modeling in TensorFlow and Python. Packt Publishing. (2018).

23. Sergey I., Christian S.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:

1502.03167. (2015).

24. Deng, J., Dong, W., Socher, R., Li, L.-J.,Li, K., Fei-Fei, L.: ImageNet: Alarge-scale hierarchical imagedatabase. In CVPR09

(2009).

25. Kaipeng Z., Zhanpeng Z., Zhifeng L., Yu Q.: Joint Face Detection and Alignment using Multi-task Cascaded Convolutional

Networks. arXiv:1604.02878. (2016)

