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Abstract: ​Pruning has always been an important part of fine tuning neural networks. The complex               
architecture of the neural network and various parameters used may cause problems in generalisation              
performance. Pruning process reduces the size of the neural network, making it more efficient. In this                
paper we compare the similarity measures, introduced in Weight Matrix versus Neuron Behaviour (T.D.              
Gedeon), used for the pruning process in a deep learning model trained through transfer learning process.                
The paper focuses on the results of pruning performed based on two different similarity measures, first                
using the similarity measure computed from neuron activation output and second, using the similarity              
measure computed by the weights on the output. The pruning process using neuron activation output               
results in better generalisation performance than the pruning process using the static weight matrix. 
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1. Introduction 
 
Neural networks are a popular tool used to solve problems ranging from simple classification, regression to                
natural language processing and computer vision tasks. Massive amount of data gathered in the last decade                
has contributed to the increasing popularity of deep neural networks used in numerous fields of study. As the                  
application domain is constantly growing, the architectures of various neural network models have become              
more complex. Therefore, problems such as generalisation, computation costs, storage and efficiency            
require more attention.  
Pruning is a popular method used to compress the pre trained network, which helps reduce the computation                 
cost and increase generalisation performance. J. Sietsma and RJF.Dow have described how generalisation             
is improved in a multilayered neural network by taking only a few neurons in the first layer[4]. Rules                  
extraction from pruned networks for breast cancer diagnosis has been described in detail by R. Setiono[6]. In                 
this paper we use pruning of hidden neurons based on the ​distinctiveness property introduced by Gedeon                
and Harris[2] and compare the results with pruning based on the ​distinctiveness property defined by the                
weight matrix[1]. Another successful research describes the ​sensitivity ​property that can be used for the               
pruning process[5].  

In a previous experiment, the pruning process was implemented on a two layer feed forward neural network                 
and the weights were updated using the error back propagation algorithm. The network was trained on the                 
combination of PCA components of Local Phase Quantisation (LPQ) features and the PCA components of               
Pyramid of Histogram of Gradients (PHOG) features extracted from the SFEW dataset[3]. The model was               
trained for 1000 epochs with 15 hidden neurons and sigmoid activation on the hidden neurons.The hidden                
neurons were connected linearly to 7 output neurons which predicted 7 different facial expression classes.               
The accuracy obtained on the test set was 22%. We extend our research by applying the pruning process on                   
a deep learning model. 

In this experiment we use the Static Facial Expression dataset[3]​. ​The images are extracted from the AFEW                 
dataset[11] which contains video clips extracted from movies. The images in the dataset covers facial               
expressions with varied head poses, large age range, close to real world illumination and different face                
resolutions. The dataset contains 675 images labelled for 7 expressions ​angry, disgust, fear, happy, sad,               
neutral ​and ​surprise and part of our goal is to build a classification model that can classify these 7                   
expressions. 

The images in the dataset contain faces at random positions and random orientations. To effectively classify                
facial expressions into 7 different emotions, a face detector is run to obtain a box region in which the face is                     
detected. The newly cropped face images are used for the classification purpose. Figure 1. shows the                
improvement in prediction accuracy after processing the images using a face detector. 
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Figure 1. VIsualisation of average accuracy before and after implementing a face detector. 

 

2. Methodology 

 

Convolutional neural networks (CNN) are a class of deep neural networks most commonly applied to               
computer vision tasks. In Image classification, CNNs are used to reduce the image into a form which is                  
easier to process and does not lose any features which impact the predictions. In our experiment we attempt                  
to build our own classifier model from scratch. The model has 3 layers of convolution with max pooling and                   
relu activation on each layer. The final layer of convolution is linearly connected to a hidden layer of 100                   
neurons activated using the relu activation function, the output from which is connected to 7 neurons which                 
predict the facial expressions. The model was trained for 70 epochs with a learning rate of 0.001. The model                   
predicts with 37.47% accuracy on the test set.  

Another approach used to classify with better accuracy is using pre trained models. The approach of transfer                 
learning not only increases the accuracy from our model but also learns in a lesser number of epochs.                  
Transfer learning is a machine learning method where a model built for a task is reused as the starting point                    
for another task. The models are usually trained on massive amounts of data and then transferred to smaller                  
dataset with some fine tuning. As the number of images in the SFEW dataset[3] is limited to only 675                   
images, transfer learning approach results in better performance than our model. For fine tuning the               
pretrained model according to the dataset, we freeze all the layers except the final layer of the pre trained                   
model. The final layer is connected sequentially to 2 layers of hidden neurons and these layers are                 
connected to 7 output neurons. In the training process, only the newly connected layers are trained.  

We attempt to pick the best pre trained model for our experiment from a set of models made available in                    
pytorch ​models subpackage. ​Resnet18​[7], ​VGG16​[9] ​and Alexnet​[8] ​are three CNN models used in this              
experiment. In terms of training time and prediction accuracy, ​Alexnet ​takes comparatively less time to train                
and has better generalisation performance compared to other models. ​VGG16​[9] ​has 13 layers of              
convolution before the final layer which impacts heavily on the time it takes to train. ​Resnet18​[7] is 18 layers                   
deep which takes time to train and also results in poor generalisation performance. It needs more images to                  
perform better as it was trained on the ​ImageNet​[10] ​database with a million images. ​Alexnet​[8] architecture                
has 5 layers of convolution followed by 3 fully connected layers which implies that there are less number of                   
computations during the training process. Hence, we selected ​Alexnet​ for the next part of our experiment.  

We try to investigate the pruning process on the pretrained model picked for our classification problem. The                 
pruning technique is from Gedeon and Harris’ Network Reduction Techniques research[2] in which they              
describe a similarity measure to prune the neurons that are too similar or complementary. The pruning                
process mentioned in the paper[2] uses the activation output of hidden neurons to calculate the similarity.                
The paper[2] describes that the ​distinctiveness ​property can be determined from the neuron activation output               
vector which represents the functionality of the hidden neurons. The similarity of pairs of vectors is computed                 
by finding the angle between them. The vectors are normalized to [-0.5,0.5] to use the angular range of                  
0-180​o​. The pairs with angles less than 15​o are considered to have similar functionality and one of the hidden                   
units is removed. The weight vector from the hidden unit which is removed is added to the other hidden                   
neuron. The pairs of vectors that have angular separation greater than 165​o are considered to have                
complementary functionality and both the hidden units are removed.  

 



 

Pairs Angles Similarity  

0 1 24.331404861484447 Similar 
0 2 132.25963282396518 
0 3 122.56606442934299 
0 4 142.69377130953515 
0 5 131.88621272166222 
0 6 34.664166264298515 
0 7 145.00200641878428 
0 8 27.853400444737986 Similar 
0 9 151.02292745517724 Complementary 
0 10 146.94683448305372 
0 11 145.25858930514497 
0 12 77.83848868724445 
0 13 141.41475008555855 

Table 1. The angle separation calculated from activation output of the hidden neurons and angular separation threshold                 
set at 30 to determine similar and complementary pairs.  

 

In another research Gedeon[1] describes that the static trained weight matrix can also be used as an                 
indicator to hidden neuron functionality. He uses the weights on the outputs to compute similarity of hidden                 
units. He compares the pruning results using the similarity measure computed from the static weight matrix                
with the pruning results using the similarity measure computed from the neuron activation output. In our                
experiment, we compare the results of pruning on our pre trained model using the two different similarity                 
measures. 

 

2.1 Pruning process 

The final convolutional layer of ​Alexnet​[8] results in 9216 features which are linearly connected to 2 layers of                  
hidden neurons. The first layer contains 1024 neurons. The second layer of hidden neurons are connected to                 
7 output neurons. Our first pruning process is done by extracting neuron activation output of the second                 
layer. We vary the number of hidden neurons in the second layer from a range of 100 neurons to 1000                    
neurons, to investigate better the outcome of pruning. The dimension of the hidden neuron activation output                
vector is (number of input neurons x number of hidden neurons). In our experiment, we have used 70% of                   
the data for training and the remaining data for testing purposes. If we take 100 hidden neurons in the                   
second layer, we obtain a vector of dimensions (472 x100) where 100 columns represent the activation                
output vectors related to 100 hidden neurons and 472 rows represent the number of training inputs. The                 
output activation vector is normalized to the range -0.5,0.5 and angular separation is computed between               
pairs of column vectors. We use the angular separation threshold different from the one described by                
Gedeon and Harris[2]. The pairs of column vectors that have an angular separation less than 30​o are                 
considered similar. Hence, we remove one of the hidden neurons and transfer the weights of the hidden                 
neuron which is removed to the other hidden neuron which remains. The pairs of column vectors that have                  
an angular separation greater than 150​o are considered complementary, hence both the neurons are              
removed.  

 

Angular 
Separation  
Threshold 

Hidden  
Neurons 

Accuracy Neurons Pruned Accuracy After 
 Pruning 

15 

100 48.27 4 49.26 

500 52.21 4 52.7 

1000 52.21 21 52.21 

20 

100 48.27 16 48.76 

500 52.21 63 52.7 

1000 52.21 36 52.21 

30 

100 48.27 50 48.76 

500 52.21 307 52.21 

1000 52.21 630 53.69 

Table 2. For angular separation threshold of 30, accuracy on the test after pruning more than half the number of hidden                     
neurons remains close to the accuracy obtained with no neurons pruned. 



 

 

The angular separation threshold is set to 30​o for the experiment as for lower thresholds, similar and                 
complementary pairs could not be determined effectively. Table 2. shows the pruning performance with              
different angular separation thresholds.  

A similar pruning is done by taking the static weight vectors to compute similarity. Gedeon[1] describes that                 
the weights from hidden neurons to the output neurons are considered as similar to the use of hidden neuron                   
activation output. Hence, in our experiment, we extract the weight vectors of the final fully connected layer                 
that connects to 7 output neurons. For 100 neurons in the second hidden layer, we obtain a weight matrix of                    
dimension (100 x 7) where 100 rows represent the weight vectors related to 100 neurons. The pruning                 
procedure is repeated as described earlier in section 2.1.  

 

3. Results 
 
3.1 Results of pruning on feed forward neural network 

In our previous experiment of pruning on a two layer feed forward neural network, the model was trained for                   
1000 epochs at a learning rate of 0.01. Table 3. shows the results of pruning using the neuron activation                   
output to compute similarity. Table 4. shows the results of pruning using static weights to compute similarity.  

 

Hidden Neurons Test accuracy 
(no pruning) 

Neurons pruned Test accuracy 

75 26.11% 21 21.67 

100 26.11% 44 18.23 

125 24.14% 49 16.26 

150 23.65% 68 19.7 
Table 3. Pruning results on models with different numbers of hidden neurons using the neuron activation output to                  
compute similarity. 

 

Hidden Neurons Test accuracy 
(no pruning) 

Neurons pruned Test accuracy 

75 26.11% 24 20.20 

100 26.11% 51 15.76 

125 24.14% 66 18.23 

150 23.65% 89 13.79 
Table 4. Pruning results on models with different numbers of hidden neurons using the static weights on output to                   
compute similarity. 

 

Pruning results in Table 3. which uses neuron activation output as distinctiveness of hidden neurons show                
better generalization performance compared to the pruning results in Table 4. which uses static weights as                
distinctiveness ​of hidden neurons. Pruning process using the weight matrix provides a better compression              
ratio but results in poor prediction accuracy on the test set.  

 

3.2 Results of pruning on the deep learning model 

As transfer learning is implemented, the model is likely to overfit on our dataset. We attempt to reduce                  
overfitting by training for a lesser number of epochs and low learning rate. Hence, we train our model for 35                    
epochs at a learning rate of 0.001 which results in consistent generalisation performance every time we train                 
the final 3 layers of our model.  

We compare the results of pruning with 100 to 1000 hidden neurons in the penultimate layer of our model.                   
Table 3. shows the prediction accuracy on the test set and the number of hidden neurons pruned in our                   
pruning process that uses hidden neuron activation output to compute similarity. Table 4. shows the results                
of  the pruning process that uses static weights to compute similarity.  



 

Figure 2. Accuracy on test set obtained from pruning using 2 different similarity measures with different number of hidden                   
neurons in the penultimate layer. 

 

The model generalises better when pruning is done by neuron behaviour distinctiveness. From the results in                
Table 5, the majority of the cases show an improved prediction accuracy on the test set after pruning away                   
more than half the number of hidden neurons. 

 

Neurons Accuracy 
Before Pruning 

Neurons Pruned 
Ratio 

Accuracy After  
Pruning 

100 48.27 44% 48.76 

200 48.27 61.5% 45.81 

300 49.26 61.3% 49.26 

400 45.81 63% 46.8 

500 49.75 65.4% 50.73 

600 52.21 67% 50.73 

700 50.24 68.1% 50.73 

800 46.79 65.7% 47.78 

900 49.75 68% 50.73 

1000 44.33 63.9% 46.36 

Table 5. Prediction accuracy on test set before and after the pruning process that uses neuron activation output to                   
compute similarity. 

 

Pruning using static weights as neuron distinctiveness results in higher compression ratio than the pruning               
using the neuron behaviour. 81.5% pruning ratio is achieved from pruning of a model with 1000 hidden                 
neurons. In most of the cases in Table 7, the generalisation performance reduces after pruning.  

Apart from the experiment of pruning, we also attempt to improve the prediction accuracy of our classification                 
model. We obtained a prediction accuracy of 53.69% by keeping 512 hidden neurons in the penultimate                
layer and training the model for 65 epochs at a learning rate of 0.0001. 

 

Emotion
s 

Angry Disgust Fear Happy Neutral Sad Surprise 

Precisio
n 

0.65 0.29 0.56 0.56 0.35 0.52 0.52 

Recall 0.50 0.40 0.41 0.66 0.48 0.48 0.48 

F1-score 0.57 0.33 0.47 0.60 0.41 0.50 0.50 
Table 6. Precision, Recall, F1-score of model trained with 512 hidden neurons for 65 epochs at a learning rate of 0.0001. 

 



Neurons Accuracy Neurons Pruned 
ratio 

Accuracy after  
pruning 

100 48.27 48% 45.32 

200 48.27 65% 46.3 

300 49.26 65.6% 50.24 

400 45.81 69% 48.76 

500 49.75 71.2% 50.25 

600 52.21 72.8% 50.73 

700 50.24 77.3% 49.75 

800 46.79 78% 44.82 

900 49.75 78.2% 49.26 

1000 44.33 81.5% 43.34 

Table 7. Prediction accuracy on the test set before and after the pruning process that uses the static weight matrix to                     
compute similarity. 

 

4. Discussion and Conclusions 
 

We have shown the comparison of pruning processes using the two similarity measures as described by                
Gedeon[1]. The results from pruning of the two layer feed forward network are similar to the results obtained                  
in the pruning process of the deep learning model. The generalisation performance of pruned models is                
better when neuron activation output is used to determine the distinctiveness of neurons. Better compression               
ratio is achieved in the pruning process that uses static weights matrix to determine the distinctiveness ​of                 
neurons. Models with better compression ratio results in poor generalisation performance which implies that              
some of the necessary neurons are also getting pruned. It also implies that the static weights are not reliable                   
information to determine the functionality of neurons. The neuron activation output resembles closely the              
behaviour of the hidden neurons.  

 

5. Future Work 
 
Our experiment was focused on the results of pruning from two similarity measures, first using neuron                
activation output to compute similarity of neurons and second using static weight on the output to compute                 
similarity. The experiment was limited to 675 images for training and testing purposes. Further research can                
be done to test the pruning methods on models trained on other datasets. The pretrained model, ​Alexnet​[8],                 
used in our experiment was trained on the ImageNet database[10]. Research can be extended to investigate                
if there is a significant improvement in generalisation performance after pruning of various pre trained CNN                
architectures that achieved benchmark performances on the ImageNet database. 
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