
Australian National University

Training a Neuron Network with Limited
Experiment Data and Hidden Neurons

 Ya Ting Wang
Australian National University

Canberra, Australia
Yating.Wang@anu.edu.au

Abstract—Pupil diameter can reflect human response to
observed environment [1]. We can identify people’s response by
analyzing the change of pupil diameter. In this report, we aim
to use a fully connected multilayer perceptron (MLP) with
limited experiment data to identify whether people watched a
fake smile video or a real smile video. The experiment data is
recorded from 10 Asian observers (6 males and 4 females), while
watching 9 real smile stimuli and 10 fake smile stimuli [2]. We
use a generative adversarial network (GAN) to help augment the
training data. Furthermore, in order to reduce the training time
of the MLP, we prune some hidden neurons based on the cosine
similarity. The results firstly indicate that the increasing
training data helps reduce the loss eventually. The results also
indicate that repeated pruning will gradually decrease the
performance of the neuron network.

Keywords—multilayer perceptron, MLP, resample, pupil
diameters, generative adversarial network, GAN, classification
problem, distinctiveness measure, pruning, pupil diameter, limited
experiment data

I. INTRODUCTION
Dataset augmentation is a popular technique applied in

visual recognition tasks. People have successfully utilized
related techniques to construct competition winning classifiers
these years. Using data augment techniques to increase the
training examples, which improves the performance in
imbalanced class problems [3]. Although dataset
augmentation is not easily used in all domains, some other
researchers have successfully applied data augmentation to
singing voice detection. By adding Gaussian noise to the input
and some operation on the audio signal, they can improve
model performance [4].

Similarity measure is another popular technique to
distinguish the redundant or less important hidden neurons.
With this technique, we can prune the hidden neurons with a
more precision way, which will eventually help save
computational space and resources.

In this report, we firstly use the data augment technique to
increase the training examples. Due to the limited experiment
dataset collected by from only 20 samples of pupil size records,
we construct a simple generative adversarial network to
generate numeric dataset with similar attributes to the real data.
And then we use a fully connect MLP to identify what type of
video the participant has watched. During the training process,
by using the distinctiveness angular measure, we gradually
reduce the redundant or less important hidden neurons to
investigate the relationship between the size of hidden layer
and neuron network performance.

II. METHODS AND DATA

A. Datasets
The pupil dataset was used for the experiments. There are

two classes, the real smile and the fake smile. This dataset
consists of 12 samples. Each sample has two subsamples,
labelled with ‘real’ or ‘fake’. Each subsample contains 540
pupil sizes. These pupil data of each subsample are collected
in time 60s. The training stage uses the first 5 samples and
the validation stage uses the second 5 samples. The testing
stage uses the last two samples.

B. Resampling
Data resampling provides a collection of techniques.

These techniques can be applied to balance or better balance
the class classification. However, in this report, we use
resampling techniques to split the training set into small
samples with the equal size.

The purpose of resampling is to increase the number of
training samples. The provided dataset has a balanced class
distribution. However, it only contains 12 samples. Before
resampling, each sample has 541 pupil diameters. If we didn’t
reduce the size of each sample, the size of neurons of input
layer would be very large. The lager number of neurons of the
input layer will lead to a large number of weights, which will
lead to overfitting. Furthermore, it is also hard to set batch
size at the training stage since we only use 10 samples during
the training stage. Therefore, it could be helpful if we
resampled the dataset. Fig 1 shows the process of resampling.
We take one data from every 10 data to construct a sample.
Each new sample has 10 pupil diameters. Since we didn’t
change the class label of the new samples, the new samples
have a balanced class distribution as well. After resampling,
the training samples increase from 10 to 540 respectively.

 Fig.1. Resampling

C. Dataset augmentation
 We use a simple generative adversarial network (GAN) to
augment the training samples (see Fig. 2). GAN generates new
samples based on the dataset after resampling. The samples
generated by GAN mimic the pupil diameters recorded in a

fixed time. These new samples look like
[[𝑥!	, 𝑥#, … , 𝑥!$], [𝑦!, 𝑦#, … , 𝑦!$], …]. We use dataset labelled
‘real’ to generate ‘real’ samples. We also use dataset labelled
‘fake’ to generate ‘fake’ samples. We export generated ‘real’
samples and ‘fake’ samples to data-real.xlsx and data-
fake.xlsx respectively. The related source code can be found
in ProduceFakeData-GAN.py.

Because of the complexity of the generative adversarial
network, we didn’t use some validation techniques to find the
optimal hyperparameters. We directly use the
hyperparameters according to the thumb of rules from a
researcher [5].

Fig.2. Generative adversarial network architecture

• Step-1 generating random noise.

Generate some random noise as input for the generator
network.

• Step-2 constructing a generator neuron network.

Fig 3 shows the architecture of the Generator neuron
network. Generator neuron network accepts the
random noise as input to generator fake data.

Fig.3. Generator neuron network architecture

• Step-3 constructing a discriminator neuron network.

Fig 4 shows the architecture of the Discriminator
neuron network. We use binary cross-entropy as its
loss function since Discriminator conducts a binary
classification task. Stochastic gradient descent is used
as its optimizer. Discriminator neuron network firstly
accepts the real samples and then it accepts the data
generated from the generator neuron network.
Discriminator will do the back propagation for all the
input data.

Fig.4. Discriminator neuron network architecture

• Step-4 exporting the generated data to files.

The generated data is exported to data-fake.xlsx and
data-real.xlsx respectively.

• Step-5 removing the outlier data from the generated
data.

With the process of training, the quality of data
generated by GAN will be gradually improved. We
removed around 300 samples generated at the early
stage.

• Step-6 comparing the generated data with the real
samples.

Fig 5 shows the ‘real’ labelled samples generated by
GAN (left) and the original samples (right) with the
same label. The range of pupil diameters generated by
GAN is from 0 ~ 0.5. Compared with the original
samples, the pupil diameters from 0.5~1.0 fail to be
generated by GAN.

Fig 6 shows the ‘fake’ labelled samples generated by
GAN (left) and the original samples (right) with the
same label. The range of pupil diameters generated by
GAN is from 0 ~ 0.8. Compared with the original
samples, the pupil diameters from 0.2~1.0 fail to be
generated by GAN.

Fig.5. ‘real’ samples from GAN and original samples

Fig.6. ‘fake’ samples from GAN and original samples

From the above diagrams, we think that the generated
data is similar to the original samples. Therefore, we
use these generated data to train the model.

D. Multilayer perceptron classification
We designed a fully connected multilayer perceptron

classification with two hidden layers. Since it is a
classification task, we use sigmoid as the activation function.
In addition, we use Adam as the optimizer since Adam
performs the best on average. We choose cross entropy as the
loss function. The output is 0 or 1 (see Fig. 7). “0” represents
that the participant watched a fake smile video. “1” represents
that the participant watched a real smile video, as in:

 𝑦(𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓(𝑓(𝑥, 𝑤!), 𝑤#), 𝑤%) (1)

Fig.7. Multilayer perceptron classification architecture

E. Validation
Since the amount of original data is small, we use the data

generated by GAN to augment the validation set. Instead of
splitting the validation set into several subset, we directly use
the validation set to find out the optimal hyperparameters.
There are two models to be validated. The first model has 4
layers and the second model has 3 layers. Table 1 shows that
these two models have the same accuracy and performance.
Therefore, we choose the second model since the second
model has less layers and neurons, which means it saves the
computation resources. Since the number of the second
model is very few, we think it is good enough to use these
numbers as the hyperparameters.

TABLE I. SPCIFICATION OF TWO NEURON NETWORK

Number of neurons

accuracy

𝟏𝒔𝒕 layer 50
97% 𝟐𝒔𝒕 layer 30

𝟑𝒔𝒕 layer 20
𝟒𝒔𝒕 layer 2

Number of neurons

accuracy

𝟏𝒔𝒕 layer 6
97% 𝟐𝒔𝒕 layer 4

𝟑𝒔𝒕 layer 2

F. Repeated pruning
According to the technique paper [5], by measuring the

distinctiveness of hidden neurons, we can firstly compute the
cosine similarity between two neurons and then we remove
the neurons if the angle between two vectors is too small.
According to the following equation, the more the degree of
two neurons are similar, the closer the value of Φ(𝑣(, 𝑣)) is
to 1.

Φ(𝑣(, 𝑣)) = cos*! +!∗+"
‖+!‖∗‖+"‖

 (2)

The removing will not dramatically affect the result of a
neuron network. In order to verify the relationship between
cosine similarity of neurons and accuracy, we recorded the
minimum cosine similarity when removing a neuron from the
first hidden layer (see Table. 2).

TABLE II. NEURON SIMILARITY OF THE FIRST HIDDEN LAYER

similarity n2 n3 n4 n5 n6

n1 0.29 0.26 0.07 -0.3 -0.5

n2 - 0.04 -0.08 -0.29 -0.19

n3 - - 0.23 0.20 -0.04

n4 - - - 0.13 -0.02

n5 - - - - 0.9

 The author also uses neuron network which is repeated
pruned to analysis the relationship between the number of
hidden neurons and the neurons behaviors. Following this
experience, we use the similar approach to verify the
relationship between the number of neurons and neuron
network performance. We repeated prune the units of the
firstly hidden layer. After removing a neuron, the network
will be retrained for 2 epochs. The performance is getting
down after repeated pruning.

III. RESULTS AND DISCUSSION

A. Augment training data imporve the performance of the
neuron network
We use generated data to augment the training samples.

Table 3 shows the loss and accuracy before and after using
data augmentation. We can find that the accuracy at the
testing stage dramatically increases after using data
augmentation.

TABLE III. COMPARE LOSS AND ACCURACY BEFORE AND AFTER DATA
AUGMENTATION

 Before
augmentation

After
augmentation

Training loss 0.6% 0.3%

Testing accuracy 50% 97%

Due to the limited knowledge and experience, we failed
to figure out why there are some unexpected loss change
during the training stage (see Fig. 8). The following
diagram shows that there are some outliers beyond the main
trend. We guess it may be caused by the data generated by
the GAN. As described in Fig.5 and Fig.6, although the
trends of the data generated by GAN and the original sample
are slightly similar, there still exists some differences
between these two types of data.

Fig.8. Loss change during the training stage

B. Repeated pruning gradually decrease the the
performance of the neuron network.
We firstly compute the cosine similarity between

neurons on the first hidden layer. And then we gradually
prune the neuron which is similar to other neurons.

Fig.9. Repeated pruning

 The above diagrams show the loss getting to decrease in
different situation. The x axis represents the number of
epochs. The y axis represents the number of loss.

The first diagram shows the loss getting to decrease when
we didn’t prune any neuron of the first hidden layer. The
loss quickly decreased at around second interval.

The second diagram shows the loss getting to decrease
when we prune the last neuron of the first hidden layer. The
reason we prune this neuron is that the cosine similarity
between neuron 5 and neuron 6 is 0.9 (see Table. 1), which
means these two neurons are cosine similar. Compared with
the first diagram, it is obvious that the loss getting to decrees
is slower than the first one. The loss costs around double
epochs to get to the lowest loss.

 The third diagram shows the loss getting to decrease
when we continued to prune the fourth neuron of the first
hidden layer. We choose to prune this neuron is that the
cosine similarity between fourth and third neuron is 0.23,
which is almost the highest one among other values (see
Table. 1). Compared with the first diagram, the loss getting
to decrease is much slower than the first one. It costs
around triple epochs to get to the lowest loss. Besides, the
loss at the early epoch is almost double compared with the
first diagram.

In conclusion, repeated pruning decreases the performance
of the neuron network.

CONCLUSION AND FURTHER WORK

 In our work, we explore a way to augment the training
samples. We firstly split the original dataset into subsets. And
then we use these subsets to generate more training samples
by using a simple generative adversarial network. At the next
stage, we construct a fully connected multilayer perceptron
classification. After validation, we choose an optimal model.
And then we compute the cosine similarity between neurons
of the second hidden layer. By pruning three neurons step by
step, we reach a conclusion that repeated pruning decreases
the performance of the neuron network.

Although we get a high accuracy at the testing stage, there
are some questions still needed to be answered. Why there are
some unexpected outliers during the process of loss
decreasing. Is there any way to improve the quality of data
generated by GAN? How can we measure the new sample’s
quality of after resampling?

Out further work will focus on two points. The first one is
to improve the performance of GAN. The second one is to
find a more mature way to resample the original data.

REFERENCES
[1] Hossain, Md & Gedeon, Tom & Sankaranarayana, R & Apthorp,

Deborah & Dawel, Amy. (2016). Pupillary Responses of Asian
Observers in Discriminating Real from Fake Smiles: a Preliminary
Study.

[2] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. 2002. SMOTE: synthetic minority over-sampling
technique. J. Artif. Int. Res. 16, 1 (January 2002), 321–357.

[3] Schlüter, Jan & Grill, Thomas. (2015). Exploring Data Augmentation
for Improved Singing Voice Detection with Neural Networks.

[4] Tanay A. (2019). Train your first GAN model from scratch using
PyTorch. Retrieved from https://blog.usejournal.com/train-your-first-
gan-model-from-scratch-using-pytorch-9b72987fd2c0

[5] T. D. Gedeon, "Indicators of hidden neuron functionality: the weight
matrix versus neuron behaviour," Proceedings 1995 Second New
Zealand International Two-Stream Conference on Artificial Neural
Networks and Expert Systems, Dunedin, New Zealand. (1995). pp. 26-
29, doi: 10.1109/ANNES.1995.499431.

