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Abstract—Pupil diameter can reflect human response to 
observed environment [1].  We can identify people’s response by 
analyzing the change of pupil diameter.  In this report, we aim 
to use a fully connected multilayer perceptron (MLP) with 
limited experiment data to identify whether people watched a 
fake smile video or a real smile video.  The experiment data is 
recorded from 10 Asian observers (6 males and 4 females), while 
watching 9 real smile stimuli and 10 fake smile stimuli [2].  We 
use a generative adversarial network (GAN) to help augment the 
training data.  Furthermore, in order to reduce the training time 
of the MLP, we prune some hidden neurons based on the cosine 
similarity.  The results firstly indicate that the increasing 
training data helps reduce the loss eventually.  The results also 
indicate that repeated pruning will gradually decrease the 
performance of the neuron network. 
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I. INTRODUCTION  
Dataset augmentation is a popular technique applied in 

visual recognition tasks.  People have successfully utilized 
related techniques to construct competition winning classifiers 
these years.  Using data augment techniques to increase the 
training examples, which improves the performance in 
imbalanced class problems [3].  Although dataset 
augmentation is not easily used in all domains, some other 
researchers have successfully applied data augmentation to 
singing voice detection.  By adding Gaussian noise to the input 
and some operation on the audio signal, they can improve 
model performance [4]. 

Similarity measure is another popular technique to 
distinguish the redundant or less important hidden neurons.  
With this technique, we can prune the hidden neurons with a 
more precision way, which will eventually help save 
computational space and resources. 

In this report, we firstly use the data augment technique to 
increase the training examples.  Due to the limited experiment 
dataset collected by from only 20 samples of pupil size records, 
we construct a simple generative adversarial network to 
generate numeric dataset with similar attributes to the real data. 
And then we use a fully connect MLP to identify what type of 
video the participant has watched.  During the training process, 
by using the distinctiveness angular measure, we gradually 
reduce the redundant or less important hidden neurons to 
investigate the relationship between the size of hidden layer 
and neuron network performance.  

II. METHODS AND DATA 

A. Datasets 
The pupil dataset was used for the experiments.  There are 

two classes, the real smile and the fake smile.  This dataset 
consists of 12 samples.  Each sample has two subsamples, 
labelled with ‘real’ or ‘fake’. Each subsample contains 540 
pupil sizes.  These pupil data of each subsample are collected 
in time 60s.  The training stage uses the first 5 samples and 
the validation stage uses the second 5 samples.  The testing 
stage uses the last two samples.    

B. Resampling 
Data resampling provides a collection of techniques.  

These techniques can be applied to balance or better balance 
the class classification.  However, in this report, we use 
resampling techniques to split the training set into small 
samples with the equal size.   

The purpose of resampling is to increase the number of 
training samples.  The provided dataset has a balanced class 
distribution. However, it only contains 12 samples.  Before 
resampling, each sample has 541 pupil diameters.  If we didn’t 
reduce the size of each sample, the size of neurons of input 
layer would be very large.  The lager number of neurons of the 
input layer will lead to a large number of weights, which will 
lead to overfitting.   Furthermore, it is also hard to set batch 
size at the training stage since we only use 10 samples during 
the training stage.  Therefore, it could be helpful if we 
resampled the dataset.  Fig 1 shows the process of resampling.  
We take one data from every 10 data to construct a sample.  
Each new sample has 10 pupil diameters.  Since we didn’t 
change the class label of the new samples, the new samples 
have a balanced class distribution as well.  After resampling, 
the training samples increase from 10 to 540 respectively. 

 
                                 Fig.1. Resampling  

C. Dataset augmentation  
 We use a simple generative adversarial network (GAN) to 
augment the training samples (see Fig. 2). GAN generates new 
samples based on the dataset after resampling.  The samples 
generated by GAN mimic the pupil diameters recorded in a 



fixed time.  These new samples look like 
[[𝑥!	, 𝑥#, … , 𝑥!$], [𝑦!, 𝑦#, … , 𝑦!$], … ].  We use dataset labelled 
‘real’ to generate ‘real’ samples.  We also use dataset labelled 
‘fake’ to generate ‘fake’ samples.  We export generated ‘real’ 
samples and ‘fake’ samples to data-real.xlsx and data-
fake.xlsx respectively.  The related source code can be found 
in ProduceFakeData-GAN.py.   

Because of the complexity of the generative adversarial 
network, we didn’t use some validation techniques to find the 
optimal hyperparameters. We directly use the 
hyperparameters according to the thumb of rules from a 
researcher [5]. 

 
Fig.2. Generative adversarial network architecture 

• Step-1 generating random noise. 

Generate some random noise as input for the generator 
network. 

• Step-2 constructing a generator neuron network. 

Fig 3 shows the architecture of the Generator neuron 
network.  Generator neuron network accepts the 
random noise as input to generator fake data. 

 
Fig.3. Generator neuron network architecture 

• Step-3 constructing a discriminator neuron network. 

Fig 4 shows the architecture of the Discriminator 
neuron network.  We use binary cross-entropy as its 
loss function since Discriminator conducts a binary 
classification task. Stochastic gradient descent is used 
as its optimizer. Discriminator neuron network firstly 
accepts the real samples and then it accepts the data 
generated from the generator neuron network.  
Discriminator will do the back propagation for all the 
input data. 

 
Fig.4. Discriminator neuron network architecture 

• Step-4 exporting the generated data to files. 

The generated data is exported to data-fake.xlsx and 
data-real.xlsx respectively. 

• Step-5 removing the outlier data from the generated 
data. 

With the process of training, the quality of data 
generated by GAN will be gradually improved.  We 
removed around 300 samples generated at the early 
stage. 

• Step-6 comparing the generated data with the real 
samples. 

Fig 5 shows the ‘real’ labelled samples generated by 
GAN (left) and the original samples (right) with the 
same label.  The range of pupil diameters generated by 
GAN is from 0 ~ 0.5. Compared with the original 
samples, the pupil diameters from 0.5~1.0 fail to be 
generated by GAN.   

Fig 6 shows the ‘fake’ labelled samples generated by 
GAN (left) and the original samples (right) with the 
same label.  The range of pupil diameters generated by 
GAN is from 0 ~ 0.8. Compared with the original 
samples, the pupil diameters from 0.2~1.0 fail to be 
generated by GAN. 

 
Fig.5. ‘real’ samples from GAN and original samples 

 
Fig.6. ‘fake’ samples from GAN and original samples 

From the above diagrams, we think that the generated 
data is similar to the original samples.  Therefore, we 
use these generated data to train the model. 

D. Multilayer perceptron classification 
We designed a fully connected multilayer perceptron 

classification with two hidden layers.  Since it is a 
classification task, we use sigmoid as the activation function.  
In addition, we use Adam as the optimizer since Adam 
performs the best on average.  We choose cross entropy as the 
loss function. The output is 0 or 1 (see Fig. 7). “0” represents 
that the participant watched a fake smile video.  “1” represents 
that the participant watched a real smile video, as in: 

 𝑦(𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓(𝑓(𝑥, 𝑤!), 𝑤#), 𝑤%)   (1)        



 

Fig.7. Multilayer perceptron classification architecture 

E. Validation 
Since the amount of original data is small, we use the data 

generated by GAN to augment the validation set.  Instead of 
splitting the validation set into several subset, we directly use 
the validation set to find out the optimal hyperparameters.  
There are two models to be validated.  The first model has 4 
layers and the second model has 3 layers.  Table 1 shows that 
these two models have the same accuracy and performance.  
Therefore, we choose the second model since the second 
model has less layers and neurons, which means it saves the 
computation resources.  Since the number of the second 
model is very few, we think it is good enough to use these 
numbers as the hyperparameters. 

TABLE I.  SPCIFICATION OF TWO NEURON NETWORK 

 
Number of neurons 

 
accuracy 

𝟏𝒔𝒕 layer 50  
97% 𝟐𝒔𝒕 layer 30 

𝟑𝒔𝒕 layer 20 
𝟒𝒔𝒕 layer 2 

 
 

Number of neurons 
 
accuracy 

𝟏𝒔𝒕 layer 6  
97% 𝟐𝒔𝒕 layer 4 

𝟑𝒔𝒕 layer 2 
 

F. Repeated pruning 
According to the technique paper [5], by measuring the 

distinctiveness of hidden neurons, we can firstly compute the 
cosine similarity between two neurons and then we remove 
the neurons if the angle between two vectors is too small.  
According to the following equation, the more the degree of 
two neurons are similar, the closer the value of Φ(𝑣(, 𝑣)) is 
to 1. 

Φ(𝑣(, 𝑣)) = cos*! +!∗+"
‖+!‖∗‖+"‖

         (2) 
 

The removing will not dramatically affect the result of a 
neuron network.  In order to verify the relationship between 
cosine similarity of neurons and accuracy, we recorded the 
minimum cosine similarity when removing a neuron from the 
first hidden layer (see Table. 2).   
 

TABLE II.  NEURON SIMILARITY OF THE FIRST HIDDEN LAYER 

similarity n2 n3 n4 n5 n6 

n1 0.29 0.26 0.07 -0.3 -0.5 

n2 - 0.04 -0.08 -0.29 -0.19 

n3 - - 0.23 0.20 -0.04 

n4 - - - 0.13 -0.02 

n5 - - - - 0.9 

 

 The author also uses neuron network which is repeated 
pruned to analysis the relationship between the number of 
hidden neurons and the neurons behaviors.  Following this 
experience, we use the similar approach to verify the 
relationship between the number of neurons and neuron 
network performance.  We repeated prune the units of the 
firstly hidden layer.  After removing a neuron, the network 
will be retrained for 2 epochs.  The performance is getting 
down after repeated pruning.   

III. RESULTS AND DISCUSSION 

A. Augment training data imporve the performance of the 
neuron network 
We use generated data to augment the training samples.  

Table 3 shows the loss and accuracy before and after using 
data augmentation.  We can find that the accuracy at the 
testing stage dramatically increases after using data 
augmentation.   

TABLE III.  COMPARE LOSS AND ACCURACY BEFORE AND AFTER DATA 
AUGMENTATION 

 Before 
augmentation 

After 
augmentation 

Training loss 0.6% 0.3% 

Testing accuracy 50% 97% 

 

Due to the limited knowledge and experience, we failed 
to figure out why there are some unexpected loss change 
during the training stage (see Fig. 8).  The following 
diagram shows that there are some outliers beyond the main 
trend.  We guess it may be caused by the data generated by 
the GAN.  As described in Fig.5 and Fig.6, although the 
trends of the data generated by GAN and the original sample 
are slightly similar, there still exists some differences 
between these two types of data. 

 
Fig.8. Loss change during the training stage 

B. Repeated pruning gradually decrease the the 
performance of the neuron network. 
We firstly compute the cosine similarity between 

neurons on the first hidden layer.  And then we gradually 
prune the neuron which is similar to other neurons. 



 
Fig.9. Repeated pruning 

    The above diagrams show the loss getting to decrease in 
different situation.  The x axis represents the number of 
epochs.  The y axis represents the number of loss. 

The first diagram shows the loss getting to decrease when 
we didn’t prune any neuron of the first hidden layer.  The 
loss quickly decreased at around second interval.   

The second diagram shows the loss getting to decrease 
when we prune the last neuron of the first hidden layer.  The 
reason we prune this neuron is that the cosine similarity 
between neuron 5 and neuron 6 is 0.9 (see Table. 1), which 
means these two neurons are cosine similar.  Compared with 
the first diagram, it is obvious that the loss getting to decrees 
is slower than the first one.  The loss costs around double 
epochs to get to the lowest loss.   

 The third diagram shows the loss getting to decrease 
when we continued to prune the fourth neuron of the first 
hidden layer.  We choose to prune this neuron is that the 
cosine similarity between fourth and third neuron is 0.23, 
which is almost the highest one among other values (see 
Table. 1).  Compared with the first diagram, the loss getting 
to decrease is much slower than the first one.  It costs 
around triple epochs to get to the lowest loss.  Besides, the 
loss at the early epoch is almost double compared with the 
first diagram. 

In conclusion, repeated pruning decreases the performance 
of the neuron network. 

CONCLUSION AND FURTHER WORK 

 In our work, we explore a way to augment the training 
samples.  We firstly split the original dataset into subsets.  And 
then we use these subsets to generate more training samples 
by using a simple generative adversarial network.  At the next 
stage, we construct a fully connected multilayer perceptron 
classification.  After validation, we choose an optimal model.  
And then we compute the cosine similarity between neurons 
of the second hidden layer.   By pruning three neurons step by 
step, we reach a conclusion that repeated pruning decreases 
the performance of the neuron network. 

Although we get a high accuracy at the testing stage, there 
are some questions still needed to be answered.  Why there are 
some unexpected outliers during the process of loss 
decreasing. Is there any way to improve the quality of data 
generated by GAN?  How can we measure the new sample’s 
quality of after resampling?  

Out further work will focus on two points.  The first one is 
to improve the performance of GAN.  The second one is to 
find a more mature way to resample the original data. 
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