
Detecting Depression with Various Neural Networks

Eric Hall[u5778954]

Australian National University, Acton ACT 2601, Australia

Abstract. Zhu et al created a neural network that could determine the severity of someone’s depression
based on the preprocessed physiological signals of a person watching that person talk [1]. I recreated this
neural network. I then applied the methods of constructive cascade networks [2] to solve the same problem.
Then I applied LSTMs to the raw timeseries data. None of my models achieved great success. The vanilla
neural network and cascade neural network achieved slightly better results than the participants in the
survey, who themselves achieved slightly better results than would be expected of random chance, but this
resulted in only approximately a third of the accuracy of the models in Zhu et al. The LSTM-based model
wasn’t even able to achieve results better than chance.

Keywords: Depression · Neural Networks · Constructive Cascade Networks · LSTM.

1 Introduction

1.1 Dataset

Zhu et al collected data on people’s physiological responses to watching videos of people at various levels
of depression [1]. They took measurements of participants’ Skin Temperature (ST), Pupil Dilation (PD), and
Galvanic Skin Response (GSP). In order to reduce the impact of the fact that different people may have different
physiological reactions, they normalized each set of measurements to fall between 0 and 1. They then extracted
various features from these measurements, including the min, max, mean, standard deviation, variance, and
more. They also knew the self-reported depression level of the people in each video, according to the Beck
Depression Inventory - II; these would be regarded as the “true” target values. These depression levels fall
into four categories: no depression, mild depression, moderate depression, and severe depression. I was provided
with the preprocessed dataset that they obtained in this way. I was also provided with the raw data that they
obtained.

1.2 Application of Neural Networks

By applying a feed-forward network to the preprocessed data, Zhu et al were able to predict the level of a
person’s depression with 88% accuracy, judging by the physiological signals of the person watching a video of
the potentially depressed person [1]. By also applying a genetic algorithm to select the features to be used by
the neural network, they were able to improve this to 92% accuracy.

1.3 Extensions to the Dataset

Some work has been done that builds upon the work of Zhu et al. One study created a similar dataset, which
contains all the types of measurement used in the original dataset, but also the Blood Volume Pulse (BVP),
which “indicates the volume of blood running through the vessels over time” [3]. Similar methods have also
been used by researchers to detect deception, as opposed to depression [4].

1.4 Constructive Cascade Models

Khoo & Gedeon proposed two new constructive cascade algorithms called Local Feature Constructive Cascade
(LoCC) and Symmetry Local Feature Constructive Cascade (SymLoCC)[2]. These are kinds of convolutional
neural networks, used for classifying faces. In these methods, an initial convolutional cascade layer is trained
that, when given a picture of a face, predicts whose face it is. Then additional cascade layers are repeatedly
added and trained, each of which takes as input both the input to the model as a whole as well as the output
of previous cascade layers. The outputs of each additional cascade layer are added to the output layer.



2 E. Hall.

1.5 Long Short Term Memory (LSTM) Neural Networks

In recurrent neural networks, some internal state is maintained between time steps. We can think of this internal
state as being produced by the network at any given time step, and passed on to another layer of the same
network at the next time step. Then over time, these layers stack on top of each other to create a very deep
neural network. Then in a sense, recurrent neural networks can be considered a kind of deep learning [8]. This
means that they share some similar characteristics, for example, the vanishing gradient problem [9][10].

Long short-term memory neural networks are a kind of recurrent neural network that solve the vanishing
gradient problem in recurrent neural networks [9].

2 Method

2.1 Problem to be Solved

We use Zhu et al’s pre-processed dataset, and just like in Zhu et al’s research, we aim to use the physiological
signals of the observer to detect the level of depression of the person in the video they are watching. This is a
worthwhile problem to solve, because depression is a major problem that a large number of people in our society
face. The ability to detect depression would be a significant help in allowing people to recognise depression in
themselves and/or others, and it would allow them to seek professional help in overcoming it. If models like
the ones discussed in this paper were to be applied in the real world to detect depression, it would have the
potential to improve millions of lives. This is why the aforementioned problem is an interesting and worthwhile
one.

2.2 Purpose of my Research

The purpose of my research is to compare the effectiveness of three different models in solving the above
problem. The first model aims to replicate the vanilla neural network used in Zhu et al [1], the second model is
an application of the techniques of Khoo & Gedeon [2] to the preprocessed dataset of Zhu et al, and the third
model is an application of LSTMs to the raw data obtained by Zhu et al.

2.3 Why the Second Model is Interesting

The two research papers do not deal with the same type of data, nor do they solve the same problem. Whereas
Khoo & Gedeon’s research deals with images and aims to recognise faces, Zhu et al’s research deals with various
statistics describing physiological signals and aims to detect depression. In spite of the differences between the
two papers, there are also some similarities. Both papers aim to classify data into some category (in the case
of Khoo & Gedeon’s research, a category corresponds to a person, to whom the face belongs, whereas in the
case of Zhu et al’s research, a category corresponds to a level of depression), and both papers aim to train
neural-network-based models to do this.

Due to both the similarities and the differences, it is interesting to consider what would happen when
techniques from one dataset are applied to the other dataset. In particular, what advantages and disadvantages
do constructive cascade models have, when compared to feed-forward neural networks, when applied to non-
image-based data? Will they be more effective than the methods used in Zhu et al’s research?

2.4 Why the Third Model is Interesting

In the process of preprocessing their data, Zhu et al reduced timeseries data to a series of statistics about the
data, including the minimum normalised GSR, the maximum normalised GSR, and many other features [1].
Reducing such a large quantity of data to such a relatively small quantity of data has the inevitable consequence
that a large amount of data will be lost, and it is almost certain that some of the data that is lost will have been
potentially useful data. Therefore, it is interesting to consider models that take into account all of the collected
data, to see if more useful information can be extracted from the data, so as to aid in classification.

Since the input data is timeseries data with no fixed length, it makes the most sense to apply recurrent
neural networks of some sort to the data. Specifically, LSTMs are a very commonly used kind of neural network
that have proven themselves to be effective.



Detecting Depression with Various Neural Networks 3

2.5 Feed-forward Neural Network

My feed-forward neural network aims to emulate the neural network used in Zhu et al as much as possible.
For this reason, I chose to have a single sigmoid hidden layer with 50 neurons, using all the features of the
preprocessed dataset, with 4 outputs representing the 4 depression levels, trained with the Adam optimizer and
Cross-Entropy loss.

In addition to just being the settings used by the original paper, these settings make sense for this problem
(as you would naturally expect from the settings chosen in a research paper). The Cross Entropy Loss is designed
to be used to predict categorical data, which is precisely what we are doing. When classifying categorical data,
it is natural to have as many outputs as categories, so that each output corresponds to a category. In this
specific scenario, a reasonable alternative would be to just have one output that ranges between 0 and 3, where
each integer denotes a depression level, because the depression levels follow a nice, linear, relationship, where
“no depression” is less severe than “mild depression” which is less severe than “moderate depression” which
is less severe than “severe depression”. But having one output for each category is a completely reasonable
representation.

I also kept the learning rate at its default value of 0.001. I did this because if you look at figures 1 and 2,
it seems that the neural network is learning at a reasonable rate using this default value. I chose to train the
neural network for 100 epochs. I did this because I found that training the network for much more than that
would lead to visible overfitting in the training loss vs testing loss graph for all validation folds.

A setting that might be improvable is the set of features that are input to the neural network. Many of
the features contain similar data to each other, and therefore may be redundant [1]. It might be a good idea
to select only a subset of these features to use in the model, as was done by Zhu et al. This would reduce the
number of weights in the model, reducing the amount of work necessary to train it. However, determining the
best features to remove is a non-trivial problem and it is much simpler to just include all the features, which is
why that is what I did.

2.6 Applying Constructive Cascade Models to the Dataset

In the second part of my research, I applied the techniques of Khoo & Gedeon [2] to the dataset of Zhu et al
[1]. The problem of classifying depression levels based on various statistics is substantially different from the
problem of face recognition using images, and so substantial changes needed to be made to the method in order
to make it work. Most notably, convolutional neural networks were used in the face recognition problem, which
works very well when applied to image data, but doesn’t work very well when applied to non-image data. I had
to replace the convolutional neural networks with sigmoid neural networks.

Otherwise, the Constructive Cascade model I used was quite similar to the model used in the paper. A linear
model is trained on the input and output. After it has finished training, additional layers are repeatedly added
and then trained, so that only one layer is being trained at a time. The input to each additional layer consists
of both the input to the model as a whole and all the outputs of all the previous layers. The outputs of all
the layers are added together to provide the output of the model as a whole. During training, I again used the
Adam optimizer and Cross-Entropy loss, so that my results would be comparable to those obtained with the
feed-forward network.

2.7 Labelling the Raw Data using the Preprocessed Data

In the raw data I was given, the videos were simply labelled “video 1”, “video 2”, etc, and they did not have
any indication as to the depression level of the subjects of the videos. In order to work out these depression
levels, I normalised the GSR using the same method as in Zhu et al [1] (I applied a min-max scalar on a
participant-by-participant basis), I took the minimum over the normalised GSR timeseries, and compared the
results to the preprocessed data, to see which videos matched with which depression labels.

I noticed that for many participants, the normalised minimum GSRs I calculated matched up precisely
with the normalised minimum GSRs in the preprocessed dataset, in exactly the same order. For several other
participants, the normalised minimum GSRs I calculated did not match up precisely with the normalised
minimum GSRs in the preprocessed dataset, but they still correlated very closely with each other. This indicates
that the videos in the raw dataset were in the same order as the videos in the preprocessed dataset. I was able
to use this information to label the raw data.

Since for some, and only some participants, the normalised minimum GSRs I calculated were different to
the normalised minimum GSRs in the preprocessed dataset, we know that there must have been an error at
some point in either Zhu et al’s or my work.



4 E. Hall.

2.8 Making the Sampling Rate Consistent

In the raw data, the pupil dilation data was recorded with a sampling rate of 60Hz, while the other data was
recorded with a sampling rate of 4Hz [1]. In order to make the sampling rate consistent, the average of every
consecutive set of 15 observations from the pupil dilation data was taken, which artificially lowered the sampling
rate to 4Hz, consistent with the other data.

2.9 Applying LSTM Neural Networks to the Raw Data

Now that the raw data had been labelled and the sampling rate had been made consistent, I could use it to train
and test an LSTM neural network. I used pytorch to do this. Like in the vanilla neural network, the output size
was 4, so as represent the 4 depression levels. But unlike the vanilla neural network, the input size was 4, so as
to represent the GSR, left pupil dilation, right pupil dilation, and skin temperature at any given time step.

To use the model, all the rows of an appropriate timeseries would be sequentially fed into the model, at which
point an output could be obtained from the model. If one was training the model, one could then backpropogate
the error through the model using pytorch’s autograd functionality, and apply some optimizer to the model.

I continued to use the Adam optimizer and Cross-Entropy loss, to keep the results from my three models
comparable. I did not change the learning rate from its default value of 0.001, as I could see from figures 5 and
6 that the learning rate was neither too low (in which case the loss would converge too slowly) nor too high (in
which case the loss would change in an unstable manner).

2.10 Evaluating my Models

Just like in Zhu et al [1], I used leave-one-participant-out cross-validation to train and test each neural network.
Since the physiological reactions of a certain participant to different videos are likely to be relatively similar
to each other, it makes sense to group all the reactions of one participant together, and either include them
all in the training dataset, or include them all in the testing dataset. So, for every participant, we create a
training set containing data from the rest of the participants, and create a testing set containing data from the
chosen participant, and we train/test the model on these sets [1]. Each such training/testing session is called
a validation fold. For each training and testing set generated in this way, we make sure to re-create/reset the
model, so that it isn’t tainted from the training it has done on the previous training sets. This allows every
piece of data to be used at some point as both training data and as testing data, without ever testing the model
on data that the model has been trained on.

Zhu et al primarily used the F1 score to evaluate their models (although they also provided the accuracy,
precision, and recall of their models). However, I chose instead to use the accuracy. This is because the main
reasoning people use to justify using the F1 score is the fact that accuracy can behave poorly when dealing with
extremely imbalanced classes. However, in this dataset, this is not a problem, because there are equal numbers
of datapoints in each class.

In order to detect whether or not my models were overfitting, for each validation fold, I recorded the
progression in training loss and testing loss over time. I used this information to create graphs comparing
training loss to testing loss.

2.11 Attempts to use Jitter to Reduce Overfitting

With regards to the Constructive Cascade model, in an attempt to reduce overfitting, I added noisy copies of
the dataset to the dataset, in the hopes that the algorithm would need to generalize in order to deal with the
noise. This is a technique used by some researchers to improve the generalization of neural networks [5], however
some other researchers cast doubt upon the effectiveness of this technique [6] [7]. It unfortunately didn’t bring
me much success.

3 Results and Discussion

Table 1. Accuracy of various methods. My data is averaged over all the validation folds.

Neural Network Constructive Cascade LSTM Model Participant Guesses [1] NN by Zhu et al [1] GA + NN by Zhu et al [1]

0.32 0.30 0.23 0.27 0.88 0.92



Detecting Depression with Various Neural Networks 5

0 20 40 60 80 100
Number of Epochs

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Lo
ss

Vanilla Neural Network Losses vs Testing Losses
Training loss
Testing loss

Fig. 1. Training loss vs testing loss for one of the validation folds when training the vanilla neural network. Notice that
high levels of overfitting start occuring from the very start of the graph.

0 20 40 60 80 100
Number of Epochs

1.30

1.35

1.40

1.45

1.50

1.55

Lo
ss

Vanilla Neural Network Losses vs Testing Losses
Training loss
Testing loss

Fig. 2. Training loss vs testing loss for a different validation fold, when training the vanilla neural network. Notice that
overfitting doesn’t start to occur until possibly the very end of the graph.



6 E. Hall.

0 200 400 600 800 1000
Number of Epochs

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Lo

ss
Constructive Cascade Training Losses vs Testing Losses

Training loss
Testing loss

Fig. 3. Training loss vs testing loss for one of the validation folds when training the constructive cascade model. Notice
that high levels of overfitting start occuring from the very start of the graph.

0 200 400 600 800 1000
Number of Epochs

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Lo
ss

Constructive Cascade Training Losses vs Testing Losses
Training loss
Testing loss

Fig. 4. Training loss vs testing loss for a different validation fold, when training the constructive cascade model. Notice
that overfitting doesn’t start to occur for the duration of the graph.



Detecting Depression with Various Neural Networks 7

0 20 40 60 80 100
Number of Epochs

1.35

1.40

1.45

1.50

1.55

Lo
ss

LSTM Training Losses vs Testing Losses

Training loss
Testing loss

Fig. 5. Training loss vs testing loss for one of the validation folds when training the LSTM model. Notice that high levels
of overfitting start occuring from the very start of the graph.

0 20 40 60 80 100
Number of Epochs

1.36

1.38

1.40

1.42

1.44

1.46

1.48

Lo
ss

LSTM Training Losses vs Testing Losses
Training loss
Testing loss

Fig. 6. Training loss vs testing loss for a different validation fold, when training the LSTM model. Notice that overfitting
doesn’t start to occur until possibly the very end of the graph.



8 E. Hall.

What is most noticeable about these results is that I was unable to come close to achieving the level of
accuracy claimed by Zhu et al [1]. However, I was able to get results that were substantially above chance, and
slightly above the accuracy of the predictions of the participants. My constructive cascade model failed to be
an improvement upon my neural network model. In fact, it is slightly less effective, although still slightly above
the accuracy of the predictions of the participants. My LSTM model failed to even obtain an accuracy above
that of random chance.

By training an LSTM on the raw data, I was able to find out for myself why Zhu et al had extracted various
statistics from the data rather than using neural network techniques directly on the raw data. The main problem
was that it took an extremely long time to train the LSTM model, on the order of several hours. Extracting
statistics from the data allowed Zhu et al to both reduce the total amount of data and also reduce the amount
of time required to forward-propogate and back-propogate through the neural net, which reduced training time.
Not only that, but extracting features in this way also seems to improve classification accuracy, perhaps because
it makes useful features visible that it would have been hard for the neural network to extract on it’s own.

My vanilla neural network model was intended to be a replica of Zhu et al’s model. The fact that my
results do not align with Zhu et al’s results indicates one of three things: Either there was some mistake in my
experimental method, there was some mistake in their experimental method, or for some reason, my model was
not a sufficiently faithful recreation of their model, despite making no actual mistakes in its implementation. I
only had a short deadline by which I had to conduct this research, whereas Zhu et al appear to have written
multiple papers on related topics and put a lot of work into their research. Therefore, it is most likely that the
mistake is on my part, or that I failed to faithfully recreate Zhu et al’s model. However, the possibility that
there is some mistake in the research of Zhu et al is not to be completely discounted.

In the analysis of figures 1 through 6, we need to keep in mind the following. If the training loss decreases
while the testing loss increases, that indicates that overfitting is occuring, as the model starts to predict very
well on the training data but fails to generalise to new data. If both the training loss and testing loss decrease
at the same time, that indicates overfitting is not occuring, since the improved classification probability on
the training data does generalise to new data. Then figures 1 through 6 show a general pattern in the levels
of overfitting in our models. Looking at these figures, we see it is universal amongst my models that in some
validation folds, overfitting will start occuring as soon as the model begins training, whereas in other validation
folds, overfitting will not start to occur for a substantial amount of training time. This makes it difficult to
make sure that the models are trained for an appropriate amount of time, as the ideal length of time varies
from validation fold to validation fold.

There are also qualitative differences in the ways in which the losses of different models change over time.
In the constructive cascade network, there was a loss spike every time a new cascade layer was added to the
data, since it took time for the new layer to learn the data. In contrast, the changes in loss for both the vanilla
neural network and the LSTM model are quite smooth.

The LSTM seemed to finish training in a far smaller number of epochs compared to the other two models.
After the first 10 or so epochs, there was little difference in the training/testing loss over time. However, this is
tainted by the fact that the LSTM took far longer to complete each epoch took than the other models, as well
as the simple fact that the classification accuracy of the LSTM was poor.

4 Conclusion

The vanilla neural network and constructive cascade models I trained were slightly more accurate than the
guesses of the participants, which were themselves slightly more accurate than chance. However, they were far,
far less accurate than the models in Zhu et al [1], with approximately a third of the accuracy. The constructive
cascade model had a slightly lower accuracy than the neural network model. The LSTM model failed to achieve
an accuracy above that of random chance.

4.1 Future Work

My models appear to be overfitting significantly to the data, and this is adversely impacting the results. Further
work in the area of reducing the overfitting of the models would be valuable. Specifically, it might be a good
idea to gather additional data to train the model on, somehow simplify the model in order to reduce the number
of parameters, or experiment with various regularisation techniques.

An interesting extension to the research of Zhu et al [1] would be to work out how little information must be
given to an observer so that they give off recognizable physiological signals that indicate the level of depression
of the person being observed. In particular, if a person is only given a video of someone walking down the street,
is it possible for them to subconsciously recognise that person’s level of depression, and for that information to
be picked up by a neural network reading their physiological signals?



Detecting Depression with Various Neural Networks 9

References

1. Zhu, X., Gedeon, T., Caldwell, S., & Jones, R. (2019). Detecting emotional reactions to videos of depression. In IEEE
International Conference on Intelligent Engineering Systems.

2. Khoo S., Gedeon T. (2008). Generalisation Performance vs. Architecture Variations in Constructive Cascade Networks.
In International Conference on Neural Information Processing.

3. Zhu, X., Gedeon, T., Caldwell, S., Jones, R. (2019). Visceral versus Verbal: Can We See Depression? In Acta
Polytechnica Hungarica.

4. Gu, X. (2019). Detecting the Doubt Effect and Subjective Belief Using Neural Network and Physiological Signals.
Published on the ANU’s Computer Science Individual Projects Website.

5. Zur, R., Jiang, Y., Metz, C. (2004). Comparison of two methods of adding jitter to artificial neural network training.
In International Congress Series.

6. Gorp, J., Schoukens, J., Pintelon, R. (1998). Adding Input Noise to Increase the Generalization of Neural Networks
is a Bad Idea. In Intelligent Engineering Systems Through Artificial Neural Networks.

7. Gorp, J. (2000). Using Variability to Analyse the Effects of Adding Jitter. In International Joint Conference on Neural
Networks.

8. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y. (2014). How to construct deep recurrent neural networks. arXiv
preprint.

9. Hocheriter, S., Schmidhuber, J. (1997). Long Short-Term Memory. In Neural Computation.
10. Nielsen, M. (2015). Neural Networks and Deep Learning. Determination press.


