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Abstract 
Fuzzing is an expensive and time consuming process. In order to fuzz more efficiently a 
small, diverse corpus is ideal. By using clusters of seeds prone to crash, or a broad 
distribution of diverse initial seeds, fuzzing is more effective. To find a better initial seed 
corpus autoencoders can be used. By using more nuanced techniques like disentangled 
variational autoencoders, the latent space of a corpus can be analysed and key features can 
be extracted to find clusters of crashing seeds, or find a small set of diverse seeds. Using 
either a cluster of crashing seeds or a very diverse set, finding more crashes, quicker is more 
likely. 
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1. Introduction 

1.1 Fuzzing, American Fuzzy Lop and Poppler 

 
Fuzzing is the act of applying random inputs to a computer program to find errors 
which cause the program to behave unexpectedly. American Fuzzy Lop (AFL) by 
Michal Zalewski is a nuanced version of this process where a program is 
instrumented by using a compiler which injects extra commands between blocks of 
code. A block of code is simply a linear set of instructions with no conditional 
elements. These commands write to a 256 x 256 bitmap which represents 
transitions between code block executions. By using these execution path bitmaps 
AFL is able to determine if a semi-randomised input generates more path execution. 
The way AFL generates inputs from an initial corpus of seeds is by randomly 
mutating them in line with methods used by evolutionary algorithms as well as 
using more interesting methods like adding and subtracting to words in both little 
and big endian. Using this method, AFL creates new seeds to test and mutate. 
 
Poppler is a package of pdf related utilities which are used by many other programs 
including LibreOffice. The specific program fuzzed in the experimental section is 
pdftotext, which converts a pdf into raw text. The version used is Poppler-0.64.0 
because there are more known bugs than newer versions which can be used as 
comparison. 



1.2 Principal Component Analysis 

Principal component analysis (PCA) is a method of determining the components of a 
dataset which contribute to maximum variance. There are two variants of PCA used 
in the experiment, both for comparison with the neural networks. One is linear PCA 
and the other is a kernel PCA with a radial bias function. These are used to look for 
both linear and non-linear patterns in the latent space. 

1.3 Disentangled Variational Autoencoders 

Autoencoders are a type of neural network where the input and output layers are 
the same size, but the hidden layers form a bottleneck, being significantly smaller 
than the input and output layers. A variational autoencoder (VAE) is a modification 
on this. It has a similar structure to a regular autoencoder but has two layers that 
feed into the bottleneck instead of just one; the mean vector and the standard 
deviation vector (Kingma D. and Welling M. 2014). VAEs also implement the loss 
function shown in Figure 1, which takes into account the Kullback-Liebler (KL) 
divergence of the data (Higgins I. et al. 2017). This KL Divergence is effectively the 
error between the optimal encoding of the data and the actual encoding of the 
data. By minimising the loss of the VAE using this nuanced loss function, we are 
working towards the optimal encoding of the input in the bottleneck space, which is 
the goal of an auto encoder.  
 

𝒍𝒊(𝜽, 𝝓) = −𝐄𝒛 ∼ 𝒒𝜽(𝒛 ∣ 𝒙𝒊)[log𝒑𝝓(𝒙𝒊 ∣ 𝒛)] + 𝐊𝐋(𝒒𝜽(𝒛 ∣ 𝒙𝒊) ∣∣ 𝒑(𝒛)) 
 

Figure 1: loss function for datapoint xi in a Variational Auto Encoder, first term being 
reconstruction loss and second term the Kullback-Leibler divergence. (Kingma D. and 
Welling M. 2014). 

 
A Disentangled Variational Autoencoder (DVAE) extends a VAE by using a β 
parameter in the loss function applied to the KL divergence (Barfoot T. and 
D’Eleuterio G. 2020) shown in Figure 2.  
 

𝒍𝒊(𝜽, 𝝓) = −𝐄𝒛 ∼ 𝒒𝜽( 𝒛 ∣ 𝒙𝒊 )[log𝒑𝝓( 𝒙𝒊 ∣ 𝒛 )] + β 𝐊𝐋(𝒒𝜽(𝒛 ∣ 𝒙𝒊) ∣∣ 𝒑(𝒛)) 
 

Figure 2: loss function for datapoint xi in a disentangled variational autoencoder, 
same as above but with the 𝛽 scaler for KL divergence. (Higgins I. et al 2017) 

 
This β parameter pushes for a higher priority on the efficiency of the encoding. 
Higgins et al. found that by adding this β parameter to a VAE, the latent space 
encoding was more nuanced and resulted in each bottleneck neuron more clearly 
representing one latent variable (Higgins I. et al 2017). When applied to the celebA 
data set (Liu Z. et al 2016), a VAE does encode rotation of the face as one of the 
variables, but creates glasses or gender changes as artefacts when modifying the 
variable. When using a DVAE instead, with β as 250, the rotation is also encoded, 
but more effectively and with minimal erroneous changes to the artefacts. This can 
be seen in Figure 3. 
 



 
Figure 3: modifying the azimuth latent variable between -3 and 3 on the celebA 
dataset (Higgins I. et al. 2017). 

 

1.4 Dataset 

The dataset used to test the effectiveness of these methods is generated from a 
large corpus of almost 100,000 seeds, which are pdf files. The afl-cmin program is 
used to minimise the set into 1,354 files. The fuzzing process runs more efficiently 
on a small amount of small files. What afl-cmin does is reduce the initial corpus of 
files into the smallest set of files, in terms of size, which covers all of the code block 
transitions. Transition bitmaps were generated for all 1,354 files and noted with size 
and seed name. This set of files was then fuzzed for 24 hours across eight parallel 
workers; one master node which goes through all mutations heuristically and seven 
which run in chaos mode, randomly deciding on mutations. The original parent 
seeds of mutated seeds which caused crashes were determined and recorded. The 
final results used for the dimensionality reduction research were a set of 1,354 
rows. Each row has seed name, file size, if it was the parent of a crash or not and 
the 256x256 transition bitmap unrolled into 65,536 features for the code block 
transition counts. 

1.5 Hypothesis 

If there is any relationship in latent space between seeds which crash in fuzzing, 
there will be a cluster in the relative encoded space which contains a majority of 
encoded crashing seeds. By comparing the PCA, AutoEncoder, VAE and DVAE 
methods, if this relation does exist, it will most likely be picked up by the DVAE 
method because of its prioritisation of encoding efficiency. 

2. Method 

2.1 Experiment Structure 

For each structure the dataset was split into an 80% train and 20% test set and then 
normalised using min max normalisation Figure 4. For each trial, Adam optimisation 
was used with an L2 regression rate of 0.001 (Kingma D. and Ba J. 2015) and the 
network was trained for 20 epochs. For the AutoEncoders, once training was 
completed, all 1,354 rows were encoded using the trained network. Next the 
columns with the highest variance were taken and mapped against each other into 



x, y pairs for a scatter plot. For PCA, the two most variant columns were converted 
to pairs and scattered. The normal AutoEncoder is run once, the PCA is run as both 
linear and RBF and the DVAE is run with a β of value with 1, 100, 250, 500, where 1 
is a normal VAE. Once the scatter plots are generated, the parent seeds which lead 
to a crash are highlighted to analyse for clustering. 
 

𝑧 =  
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 

 
Figure 4: The min max normalisation function 

 

2.2 Autoencoder Structure 

All encoders follow the same structure of five layers, taking in and returning the 
unwrapped bitmap of 65,536. The input and output layers have 65,536 neurons, 
intermediate layers have 4,000 neurons and the bottleneck has 15 neurons, with 
the VAE encoders having two layers of 15. 

3. Results and Discussion 

3.1 Training Analysis 

After training each of the networks for 20 epochs, the autoencoder settled around 
0.01 using MSELoss. The VAE settled around 6,000 using BCE + KL divergence. 
Shown in Table 1, we can see that the smallest loss was for a β value of 100 and the 
highest was for 500. 
 

Table 1: β value with final test loss after 20 epoch 
β value Final Test Loss (3 d.p.) 

100 4974.815 
250 5252.135 
500 5134.066 

 
This demonstrates the benefit to experimenting with β hyperparameters suggested 
by Higgins et al. (Higgins I. et al. 2017). For this experiment, the better results came 
from the smaller β value as opposed to that in the original DVAE paper which found 
a β value of 250 worked the best. This suggests that while there is some value in 
trying to find relationships in this latent space, but at β value 250 the balance of 
prioritised KL divergence is not as effective (Figure 5). 

 

 
Figure 5: from left to right test loss for VAE with β value 100, 250, 500 



3.2 Crash Clustering 

To determine if the found latent space is valuable for finding crashing seeds, the set 
of 1,354 pdf seeds is run through all of the autoencoders and then the most variant 
features are compared against each other as x,y pairs on a scatter plot. The crashing 
seeds are highlighted in yellow to determine if there are any patterns. These are 
compared against the PCA graphs for contrast. In Figures 6 and 7 there are the 
Linear and Kernel RBF references. Here there are no real patterns since it seems to 
be evenly distributed for the most part. There is a small cluster around -15, 10 
which contains no crashing seeds, which could be removed from the set. 

 

 
Figure 6: The minimised corpus run through PCA, using the two features with highest 
explained variance. 

 
 

 
Figure 7: The minimised corpus run through Kernel PCA RBF with yellow as the crashing 
seeds. The x-axis is the highest variance component and the y the second highset. 

 
Looking at the results of the autoencoders, we see similar results (Figure 8). The 
crashes are mostly evenly distributed, which means that there are no major 
clusters of crashing seeds to sample future crashes from. 

 



 
Figure 8: comparison of the most variant component, from top to bottom: DVAE- β 100, 
DVAE- β 250, DVAE- β 500. 

 
 



 
 

Figure 9: left side, VAE most variant components and on the right a normal AutoEncoder 

 
It appears that in the VAE and Auto encoder graphs (Figure 9), there is again a small 
cluster towards the bottom of the graph which could be removed to make the 
process more efficient. 

 

3.3 Fuzzing results 

Although there is no real clustering of crashes, this does not mean that the results 
are not useable. We can make the fuzzing run more efficiently using the 
distribution. A small set of very diverse seeds may produce as good results as a 
larger less diverse corpus because the larger corpus has more overlap in latent 
space and therefore theoretically less diverse code block execution. To test this 
theory, a set of 100 diverse seeds were chosen from the DVAE with a β value of 100 
as it had the most loss. The way these seeds were selected is by finding the two 
most distant seeds in the set after encoding all of the seeds with the DVAE, then the 
seed most distant from the selected seeds was iteratively chosen until there was 
100 selected seeds. As a control, 100 seeds were also chosen randomly and also 
fuzzed. 
 
After fuzzing both sets for 24 hours there were no crashes found, which is not 
uncommon, but the total unique paths found can be used as a metric for how 
effective the sets were. The random set found 2,166 unique execution paths and 
encoded diverse set found 3,839 paths. This is 23.07% and 24.24% bitmap coverage 
respectively (Figure 10). This shows that using distinct seeds is more effective at 
fuzzing a program and that a DVAE can be used effectively to determine this 
distinctiveness. 



 
Figure 10: Total paths found and bitmap coverage for random and distinct sets 

 

4. Conclusion 
Using dimensionality reduction techniques such as PCA or looking for relationships 
in latent space with Autoencoders does not produce clear clustering of crashing 
results of the pdftotext program using AFL. However, the distribution of seeds using 
this technique can be used to create a diverse set of seeds to marginally increase 
the performance of fuzzing in general. This may not be the case for every program 
which is fuzzed by AFL, so there is potential for this technique to be used against 
other programs to determine if there is clustering of crashes based on a latent 
variable. The results also show that Autoencoders can potentially be used 
effectively to optimise AFL fuzzing runs. 

 

5. Future Work 
While the initial results are promising, more thorough testing would be beneficial. 
Running the final fuzzing trial multiple times would reinforce the effectiveness of 
using an engineered distinct set. Running the various autoencoders on different sets 
of seeds with different target programs may also yield different results when it 
comes to crashing seed clustering. For example, on a program where files which 
execute an obscure code block always crash, there may be better clustering. More 
epochs in training and more parallelised fuzzing may have generated better results. 
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