
Genetic Algorithm for Hyperparameter
Tuning – Maximizing Convergence Speed

and Ability

Xinqi Zhu

Research school of Computer Science, Australian National University

Canberra A.C.T 2601 Australia

e-mail: xinqi.zhu@anu.edu.au

Abstract. Genetic algorithm is an innovative optimisation approach while hyperparameter tuning of a model to

match problem complexity has long been a challenging problem. This paper applies genetic algorithm to find the

optimal hyperparameter setting of a feedforward neural network, where the optimum is defined on the convergence

speed and ability of a model. The dataset used is a collection of results of a stress stimuli experiment. After

experimenting with different genetic algorithm architectures, the found optimum has an increase of 24% of fitness

value from baseline. Along with conducting the experiment, this paper also examines the famous exploration-

exploitation trade-off in optimisation process for different genetic algorithm architectures by studying the statistical

properties of the final population.

Keywords: genetic algorithm, hyperparameter tuning, feedforward neural network, convergence ability, convergence

speed, exploration-exploitation trade-off

1 Introduction

1.1 Genetic algorithm

Model complexity is one key factor that influences the convergence and generalization ability of Feedforward Neural

Networks (FNNs) trained by backpropagation. Model complexity is expected to highly match problem complexity to

reach a good model. Hyperparameters are the factors that determine the model complexity. For FNNs, there are lots of

hyperparameters that lay an important impact on complexity, such as network architecture (the number of hidden

neurons, their connection topology etc.), the optimisation algorithm configuration (learning rate, weight decay etc.), it is

arguably hard to find an optimal hyperparameter setting.

As for finding optimal network structure, there are three groups of approaches: one group performs a search over

parameter spaces; one group simplifies from an overly complex model; one group progressively builds up a model [1].

In the previous submission, we examined the third group termed with constructive cascade network [8], especially one

network structure named casper proposed by [1], [3] and conducted an experiment to maximize convergence ability and

speed. This paper continues with the same target; however, we want to find the optimal joint setting of network

architecture and training optimisation algorithm though one optimisation schema - genetic algorithm (GA).

GA, proposed by Holland in 1975 [13], is the most common category of Evolution computation (EC). EC is built upon

Darwinian Evolution Theory and inspired by the theory of natural selection and survival of the fittest [2], while GA

focuses on genetic evolution. Genetic algorithms provide a good alternative to traditional optimization techniques [12],

it adopts the genetic information to perform a directed random search to find the optimal solution defined by fitness.

The search for optimal hyperparameter setting of an FNN is an optimisation problem and fits naturally into the GA

framework.

mailto:xinqi.zhu@anu.edu.au

2 Xinqi Zhu

1.2 Dataset

The dataset used is termed with dataset-thermal-stress proposed by [10]. This dataset contains RGB images and thermal

images of participants in a stress stimuli experiment and participants’ stress level is labelled. A brief summary of the

experiment would be that participants watch prepared pictures or videos that have stress implication. It is of research

value as stress is a major and common problem worldwide. Furthermore, the data are collected by contact-free

approach, which is of great practical promotion value. For the purpose of examining GA on FNN, which is not deep

neural network structure, images are not used rather than their top principle components.

As a result of adopting principle components as features, it can be demonstrated dataset-thermal-stress becomes

weakly-informative. In other words, these features consist of very little information that can be used to predict stress

level. As the same principle highlighted in [5], the unsuitable nature of problem or dataset in the context of fitting

neural networks leads to lack of generalization. This is one of the key reasons that we focus on convergence ability and

speed during training rather than model generalization ability during testing.

1.3 Experiment and paper structure

One experiment on finding optimal hyperparameter tuning to maximize convergence ability and speed is carried out on

dataset-thermal-stress by GA. For the key components of GA – selection, crossover, mutation etc., there are also

different operators (algorithms) and tunable parameters. We shall experiment with a few and report their performance.

We shall report the optimal setting found throughout experiment. [6] claims that exploration and exploitation are two

cornerstones of search algorithms to solve problems. We consider the statistical properties of final population as an

overview of trade-off between exploration and exploitation, so that’s the second part of our report on the experiment.

In section Method, a detailed report is provided on profiling the dataset, justifying the nature of dataset being weakly-

informative; a baseline of FNN is provided in addition to the optimal casper network found in previous paper; finally

the instantiation of main components of GA in our problem is provided. In section Result, the optimal hyperparameter

setting found by GA is firstly reported with a comparison to baseline and casper; then experiment results of different

architectures and parameters of GA are reported, with discussion on results that leads to conclusion.

2 Method

2.1 System environment

All data reported below is by experimenting on one Ubuntu 19.10 desktop with Intel i7-7700 CPU set. The version of

required library is: Anaconda Python 3.7, Pytorch 1.5, CUDA 10.1(though not training network on GPU).

2.2 Dataset profiling

The features of dataset-thermal-stress are PCA eigenvalues, ranging from -106 to 106. To prevent gradient exploding or

vanishing in FNNs, normalization to -1 to 1 is performed as the first step. Then we explore the nature of dataset-

thermal-stress, proving that it is weakly-informative, three pieces of evidence is provided.

First of all, the statistical Pearson correlation measure is conducted, and its coefficients are reported in Table 1. The

largest absolute value of Pearson coefficient of label with respect to prediction target label is 0.022, which suggests all

features by themselves only are weakly correlated with target.

 RGB_pca1 RGB_pca2 RGB_pca3 RGB_pca4 RGB_pca5

label 0.00536 0.00553 -0.00928 0.00394 0.022272

 Thermal_pca1 Thermal_pca2 Thermal_pca3 Thermal_pca4 Thermal_pca5

label -0.00404 0.01494 0.01016 -0.00151 0.00255

Table 1. Pearson correlation of dataset-thermal-stress

Secondly, visualisation of distribution can be achieved by performing a dimension reduction. As shown in Figure 1, the

two classes of target are highly overlapped in this parameter space. Thirdly, we heuristically determine the

hyperparameters of FNN and do a complete training-validating-testing process. The average results are reported in

Table 2 (an example of entry in topology: i-15-10-o means 2 hidden layers of 15 neurons and 10 neurons in both

respectively). The training accuracy can reach 75% while testing accuracy is unstable and around 50%.

Genetic Algorithm for Hyperparameter Tuning – Maximizing Convergence Speed and Ability 3

The instability and being around 50% of test accuracy do not change with GA, plus that we focus on behaviour in

training phase, so the test accuracy will not be reported for the experiment.

 topology activation epoch Learning rate Train accuracy (%) test accuracy (%)

1 i-25-o sigmoid 5000 0.001 53.05 43.50

2 i-15-10-o sigmoid 5000 0.001 51.06 45.75

3 i-15-10-o ReLU 5000 0.001 72.48 49.03

4 i-15-10-o ReLU 10000 0.001 74.05 42.22

5 i-15-10-o ReLU 10000 0.0005 75.44 50.36

Table 2.

Fig. 1.

2.3 Baseline

We define the best hyperparameter setting achieved by manual tuning in data profiling phase as the baseline, the

training accuracy is different as reported in 2.2 since there is no train-test split here. Table 3 demonstrates the result (see

2.4.1 for fitness), The baseline also indicates the search space of hyperparameters in GA:

 Number of epochs Number of tunable weights Training accuracy Fitness value

Baseline 10000 347 0.7216 2.538

 Number of neurons

in 1st hidden layer

Number of neurons

in 2nd hidden layer

Number of epochs Learning

rate

Weight

decay

Baseline 15 10 10000 0.0005 0.001

Table 3.

2.4 GA

2.4.1 Fitness measure: convergence speed and ability

The fitness function corresponds to an individual’s ability to survive in the environment in Biology and represents the

objective function in computational intelligence, which aligns with the optimization target [2]. The fitness measure in

our experiment is a direct measurement of convergence speed and ability. Firstly, in the context of the training phase of

we define the number of epochs in training as convergence speed; the number of trainable weights in FNN and training

accuracy as convergence ability (fewer weights and higher accuracy means better convergence ability). Secondly, we

quantify them in the following formula:

4 Xinqi Zhu

Fig. 2.

where e, n, a stand for the number of epochs, number of weights, training accuracy respectively. A higher F value

means the individual is more likely to survive. The range of F value is theoretically 0 to 4 inclusive.

Number of epochs (e): Emin and Emax is the minimum and maximum possible value of number epochs, this is defined

manually. For search the best number of epochs, a search space is defined which is parameterized by max and min

value. Therefore, the fitness can be defined on a comparison of current value to these two.

Number of weights (n): Nmin and Nmax are defined similarly. So is the fitness criterion.

Training accuracy (a): Since it is a binary classification problem, a random classifier can statistically achieve 50%

accuracy. So 0.5 becomes the baseline. The number 4 is a scaling coefficient to emphasize the accuracy more.

2.4.2 Chromosome

In GA, one chromosome is one candidate solution, and the genotype is the genetic composition of one candidate [2].

For our experiment, one chromosome is one FNN trained on the dataset, characterized by different hyperparameter

settings. Therefore, a dictionary data structure is used to represent the genotype and then used to describe a candidate

solution Table 4 shows the different genes and their value type. The clamp values in the third column are obtained

manually by observing a few pre-experiment trails.

Gene Value type Clamp

Number of neurons in first hiddenly layer Integer [10, 30]

Number of neurons in first hiddenly layer Integer [5, 30]

Number of epochs Integer [7500, 20000]

Learning rate Float [5e-5, 5e-3]

Weight decay Float [5e-5, 5e-3]

Table 4.

2.4.3 Selection

The selection operator is directly associated with the concept of survival of the fittest in GA [2]. The concept of

selective pressure is used to compare different selection operators. It is a measure of the degree of emphasizing on

better solutions, and there is a trade-off between that and population diversity. We shall compare two selection

operators.

2.4.4 Crossover

The crossover process is to generate one or more individuals by combining genes from randomly selected parents that

pass the selection phase [2]. In our experiments, we use the sexual category of crossover where each offspring is

produced by exactly two parents, since we want the gene combination (why not asexual) and the genotype size is not

large (why not multi-recombination). All genes in our chromosome setting are of continuous value, so we shall

experiment with two different floating-point-presentation crossover algorithms proposed in [2].

2.4.5 Mutation

The mutation process randomly changes the value for genes, which introduces new genetic material and therefore

increase the population diversity [2]. From the optimisation perspective, mutation can be viewed as a random walk in

search space. We use the famous uniform mutation for all genes and experiment with different mutation rates.

3 Results and discussion

Since the running time of GA is rather long and our time is limited, all results reported in this section are an average of

2 runs of GA. We examine different approaches and parameters in GA in order, so the optimal value obtained shall be

used and verified in all later steps.

Genetic Algorithm for Hyperparameter Tuning – Maximizing Convergence Speed and Ability 5

The first report is on the best hyperparameter setting found by the experiment in Table 5, which is defined by best

convergence ability and speed in training (and numerically evaluated by the fitness function). The above results cannot

be compared to [10], as they do not provide a report on convergence speed and ability, which is not their research focus.

 Best found by GA Baseline Best found by casper

Fitness value 3.1369 2.5380 2.9612

Train accuracy (%) 86.13 75.44 74.03

 Number of neurons

in 1st hidden layer

Number of neurons

in 2nd hidden layer

Number of

epochs

Learning

rate

Weight decay

Best found by GA 30 6 7500 0.00137 5e-5

Table 5.

3.1 Population size and number of generations

The efficiency and effectiveness of algorithms treated with GA are dependent on achieving a balance between

population size and the number of generations [4]. We study the effectiveness of GA in different settings of population

size and the number of generations while keeping the total number of searched solutions constant - 400. The reasons for

setting it to 400 are that 400 already produces good solutions and GA takes hours to run while our time is quite limited.

The optimal setting found is population size being 20 and generation being 20. Table 6 shows the details.

 POP_SIZE=5

N_GEN=80

POP_SIZE=10

N_GEN=40

POP_SIZE=20

N_GEN=20

POP_SIZE=40

N_GEN=10

POP_SIZE=80

N_GEN=5

Best fitness value in

final generation

2.6766 2.7003 2.9243 2.9132 2.8771

Avg fitness value in

final generation

2.545 2.5934 2.6538 2.3119 2.1052

Variance fitness value

in final generation

0.0044 0.0094 0.1014

0.1038 0.2001

Best fitness value in all

generations

2.7557

2.7946 3.0115 2.9502 3.0871

Table 6.

We see that a small population size results in the individuals in the final population being not so fitted to the

environment even after a large number of generations, and this suggests an over-emphasis on exploitation. The result of

the reverse setting is that though the best individual has high fitness value, the average of final population is quite low,

indicating a large portion of underfitting individuals; and it clearly reveals search process of such setting is quite

insufficient of exploitation. Balanced population size and number of generations is a good trade-off of exploration and

exploitation, which obtains a stably good final population along with finding optimal fitness value. Figure 2 shows the

training process of the optimal setting.

Fig. 3.

3.2 Mutation rate

GA as a search approach, its mutation process is a key control to exploitation. Intuitively, a higher mutation rate

emphasizes more on exploitation. We experiment with a few different mutation rates and report their impact in Table 7.

We see that although the best fitness value is found under 0.01, its overall fitness of the final population is slightly

worth than that of 0.002. A general trend is that higher mutation rate leads to more emphasis on exploration over

6 Xinqi Zhu

exploitation. A relatively high mutation rate explores more, but these explorations are undirected random search, so it is

not robust to find a good solution. These conform to the effect of mutation rate.

Mutation rate 0.002 0.01 0.05 0.2

Best fitness value in final generation 2.9894 2.9243 3.0103 2.6631

Avg fitness value in final generation 2.7583 2.6538 2.4538 2.1315

Variance fitness value in final generation 0.0534 0.1014 0.1239 0.3313

Best fitness value in all generations 3.0115 3.1041 3.0103 2.9084

Table 7.

3.3 Selection algorithm and crossover algorithm

There are two candidate selection algorithms and two crossover algorithms. For selection, [7] proposes proportional

selection and we propose its Laplace smoothing version. The formula is in Figure 4. For crossover, we study blend

crossover and the simulated binary crossover (SBX) proposed by [9] and [11] respectively. The formula is in Figure 5.

Fig. 4. Top – proportional selection; Bottom – its Laplace smoothing

Fig. 5. Left – blend crossover; Right – simulated binary crossover

We experiment with the 4 combinations and report the results in Table 8. Based on the results, we see that compared to

the other one, smoothed proportional selection and SBX results in a less fitted final population, so we can conclude that

they emphasize more on exploration.

Selection, crossover combination Blend +

proportional

Blend +

smoothed

proportional

SBX +

proportional

SBX +

smoothed

proportional

Best fitness value in final generation 2.9243 3.0442 2.9891 2.7303

Avg fitness value in final generation 2.6538 2.4011 2.5436 1.7388

Variance fitness value in final generation 0.1014 0.2695 0.2548 0.2641

Best fitness value in all generations 3.1041 3.0834 3.1369 3.1173

Table 8.

4 Conclusion and future work

We applied genetic algorithm to find the optimal hyperparameter setting of an FNN trained on dataset-thermal-stress,

results from a stress stimuli experiment. The optimal criterion is defined on the convergence speed and ability of a

model. The reported optimum found by GA in our experiment has an increase of 24% of fitness value from baseline.

During experimenting with different genetic algorithm architectures, by studying statistical properties of the final

population, we conclude that exploration-exploitation trade-off is important for the performance of GA and different

architectures have different implications. In future work, we can refine the fitness function and finds a more systematic

criterion. Also, vector-based crossover algorithms such as parent centric crossover proposed by [14] can be examined as

we only experimented with scalar-based crossover algorithms.

Genetic Algorithm for Hyperparameter Tuning – Maximizing Convergence Speed and Ability 7

References

[1] Treadgold, N.K. and Gedeon, T.D., "Exploring constructive cascade networks," in IEEE Transactions on Neural

Networks, vol. 10, no. 6, pp. 1335-1350, Nov. 1999.

[2] A. P. Engelbrecht, Computational Intelligence: An Introduction. (2nd ed.) Hoboken, NJ;Chichester, West Sussex,

England;: J. Wiley, 2007.

[3] Treadgold, N.K. and Gedeon, T.D., "A Cascade network algorithm employing Progressive RPROP, "

10.1007/BFb0032532, 2006.

[4] K. Kalaiselvi and A. Kumar, "An empirical study on effect of variations in the population size and generations of

genetic algorithms in cryptography," in 2017, . DOI: 10.1109/ICCTAC.2017.8249997.

[5] Lewis, I. J., & Beswick, S. L. (2015). Generalisation over details: The unsuitability of supervised backpropagation

networks for tetris. Advances in Artificial Neural Systems, doi:

http://dx.doi.org.virtual.anu.edu.au/10.1155/2015/157983

[6] M. Črepinšek, S. Liu and M. Mernik, "Exploration and exploitation in evolutionary algorithms: A survey," ACM

Computing Surveys (CSUR), vol. 45, (3), pp. 1-33, 2013.

[7] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan, Press, Ann Arbor, 1975.

[8] Tin-Yau Kwok and Dit-Yan Yeung, "Constructive algorithms for structure learning in feedforward neural networks for

regression problems," in IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 630-645, May 1997.

[9] L.J. Eshelman and J.D. Schaffer. Real-Coded Genetic Algorithms and Interval, Schemata. In D. Whitley, editor,

Foundations of Genetic Algorithms, volume 2, pages 187–202, San Mateo, 1993. Morgan Kaufmann.

[10] Irani, R., Nasrollahi, K., Dhall, A., Moeslund, T. B. and Gedeon, T.D., "Thermal super-pixels for bimodal stress

recognition," 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu,

2016, pp. 1-6.

[11] K. Deb and R.B. Agrawal. Simulated Binary Crossover for Continuous Space. Complex Systems, 9:115–148, 1995

[12] M. Srinivas and L. M. Patnaik, "Genetic algorithms: a survey," Computer, vol. 27, (6), pp. 17-26, 1994.

[13] J.H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, Ann Arbor, Mich., 1975

[14] K. Deb, D. Joshi, and A. Anand. Real-Coded Evolutionary Algorithms with Parent-Centric Recombination. In

Proceedings of the IEEE Congress on Evolutionary Computation, pages 61–66, 2002.

