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Abstract. Genetic algorithm is an innovative optimisation approach while hyperparameter tuning of a model to 

match problem complexity has long been a challenging problem. This paper applies genetic algorithm to find the 

optimal hyperparameter setting of a feedforward neural network, where the optimum is defined on the convergence 

speed and ability of a model. The dataset used is a collection of results of a stress stimuli experiment. After 

experimenting with different genetic algorithm architectures, the found optimum has an increase of 24% of fitness 

value from baseline.  Along with conducting the experiment, this paper also examines the famous exploration-

exploitation trade-off in optimisation process for different genetic algorithm architectures by studying the statistical 

properties of the final population.
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1 Introduction

1.1 Genetic algorithm 

Model complexity is one key factor that influences the convergence and generalization ability of Feedforward Neural 

Networks (FNNs) trained by backpropagation. Model complexity is expected to highly match problem complexity to 

reach a good model. Hyperparameters are the factors that determine the model complexity. For FNNs, there are lots of 

hyperparameters that lay an important impact on complexity, such as network architecture (the number of hidden 

neurons, their connection topology etc.), the optimisation algorithm configuration (learning rate, weight decay etc.), it is 

arguably hard to find an optimal hyperparameter setting. 

As for finding optimal network structure, there are three groups of approaches: one group performs a search over 

parameter spaces; one group simplifies from an overly complex model; one group progressively builds up a model [1]. 

In the previous submission, we examined the third group termed with constructive cascade network [8], especially one 

network structure named casper proposed by [1], [3] and conducted an experiment to maximize convergence ability and 

speed. This paper continues with the same target; however, we want to find the optimal joint setting of network 

architecture and training optimisation algorithm though one optimisation schema - genetic algorithm (GA). 

GA, proposed by Holland in 1975 [13], is the most common category of Evolution computation (EC). EC is built upon 

Darwinian Evolution Theory and inspired by the theory of natural selection and survival of the fittest [2], while GA 

focuses on genetic evolution. Genetic algorithms provide a good alternative to traditional optimization techniques [12], 

it adopts the genetic information to perform a directed random search to find the optimal solution defined by fitness. 

The search for optimal hyperparameter setting of an FNN is an optimisation problem and fits naturally into the GA 

framework.  
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1.2 Dataset  

The dataset used is termed with dataset-thermal-stress proposed by [10]. This dataset contains RGB images and thermal 

images of participants in a stress stimuli experiment and participants’ stress level is labelled. A brief summary of the 

experiment would be that participants watch prepared pictures or videos that have stress implication. It is of research 

value as stress is a major and common problem worldwide. Furthermore, the data are collected by contact-free 

approach, which is of great practical promotion value. For the purpose of examining GA on FNN, which is not deep 

neural network structure, images are not used rather than their top principle components. 

As a result of adopting principle components as features, it can be demonstrated dataset-thermal-stress becomes 

weakly-informative. In other words, these features consist of very little information that can be used to predict stress 

level. As the same principle highlighted in [5], the unsuitable nature of problem or dataset in the context of fitting 

neural networks leads to lack of generalization. This is one of the key reasons that we focus on convergence ability and 

speed during training rather than model generalization ability during testing. 

1.3 Experiment and paper structure 

One experiment on finding optimal hyperparameter tuning to maximize convergence ability and speed is carried out on 

dataset-thermal-stress by GA. For the key components of GA – selection, crossover, mutation etc., there are also 

different operators (algorithms) and tunable parameters. We shall experiment with a few and report their performance. 

We shall report the optimal setting found throughout experiment. [6] claims that exploration and exploitation are two 

cornerstones of search algorithms to solve problems. We consider the statistical properties of final population as an 

overview of trade-off between exploration and exploitation, so that’s the second part of our report on the experiment.  

In section Method, a detailed report is provided on profiling the dataset, justifying the nature of dataset being weakly-

informative; a baseline of FNN is provided in addition to the optimal casper network found in previous paper; finally 

the instantiation of main components of GA in our problem is provided. In section Result, the optimal hyperparameter 

setting found by GA is firstly reported with a comparison to baseline and casper; then experiment results of different 

architectures and parameters of GA are reported, with discussion on results that leads to conclusion. 

2 Method 

2.1 System environment 

All data reported below is by experimenting on one Ubuntu 19.10 desktop with Intel i7-7700 CPU set. The version of 

required library is: Anaconda Python 3.7, Pytorch 1.5, CUDA 10.1(though not training network on GPU). 

2.2 Dataset profiling 

The features of dataset-thermal-stress are PCA eigenvalues, ranging from -106 to 106. To prevent gradient exploding or 

vanishing in FNNs, normalization to -1 to 1 is performed as the first step. Then we explore the nature of dataset-

thermal-stress, proving that it is weakly-informative, three pieces of evidence is provided.  

First of all, the statistical Pearson correlation measure is conducted, and its coefficients are reported in Table 1. The 

largest absolute value of Pearson coefficient of label with respect to prediction target label is 0.022, which suggests all 

features by themselves only are weakly correlated with target. 

 RGB_pca1 RGB_pca2 RGB_pca3 RGB_pca4 RGB_pca5 

label 0.00536 0.00553 -0.00928 0.00394 0.022272 

 Thermal_pca1 Thermal_pca2 Thermal_pca3 Thermal_pca4 Thermal_pca5 

label -0.00404 0.01494 0.01016 -0.00151 0.00255 

Table 1. Pearson correlation of dataset-thermal-stress 

Secondly, visualisation of distribution can be achieved by performing a dimension reduction. As shown in Figure 1, the 

two classes of target are highly overlapped in this parameter space. Thirdly, we heuristically determine the 

hyperparameters of FNN and do a complete training-validating-testing process. The average results are reported in 

Table 2 (an example of entry in topology: i-15-10-o means 2 hidden layers of 15 neurons and 10 neurons in both 

respectively). The training accuracy can reach 75% while testing accuracy is unstable and around 50%.  
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The instability and being around 50% of test accuracy do not change with GA, plus that we focus on behaviour in 

training phase, so the test accuracy will not be reported for the experiment. 

 topology activation epoch Learning rate Train accuracy (%) test accuracy (%) 

1 i-25-o sigmoid 5000 0.001 53.05 43.50 

2 i-15-10-o sigmoid 5000 0.001 51.06 45.75 

3 i-15-10-o ReLU 5000 0.001 72.48 49.03 

4 i-15-10-o ReLU 10000 0.001 74.05 42.22 

5 i-15-10-o ReLU 10000 0.0005 75.44 50.36 

Table 2. 

 

Fig. 1.  

2.3 Baseline 

We define the best hyperparameter setting achieved by manual tuning in data profiling phase as the baseline, the 

training accuracy is different as reported in 2.2 since there is no train-test split here. Table 3 demonstrates the result (see 

2.4.1 for fitness), The baseline also indicates the search space of hyperparameters in GA: 

 Number of epochs Number of tunable weights Training accuracy Fitness value 

Baseline 10000 347 0.7216 2.538 

 

 Number of neurons 

in 1st hidden layer 

Number of neurons 

in 2nd hidden layer 

Number of epochs Learning 

rate 

Weight 

decay 

Baseline 15 10 10000 0.0005 0.001 

Table 3.  

2.4 GA 

2.4.1 Fitness measure: convergence speed and ability 

The fitness function corresponds to an individual’s ability to survive in the environment in Biology and represents the 

objective function in computational intelligence, which aligns with the optimization target [2]. The fitness measure in 

our experiment is a direct measurement of convergence speed and ability. Firstly, in the context of the training phase of 

we define the number of epochs in training as convergence speed; the number of trainable weights in FNN and training 

accuracy as convergence ability (fewer weights and higher accuracy means better convergence ability). Secondly, we 

quantify them in the following formula: 
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Fig. 2.  

where e, n, a stand for the number of epochs, number of weights, training accuracy respectively. A higher F value 

means the individual is more likely to survive. The range of F value is theoretically 0 to 4 inclusive.  

Number of epochs (e): Emin and Emax is the minimum and maximum possible value of number epochs, this is defined 

manually. For search the best number of epochs, a search space is defined which is parameterized by max and min 

value. Therefore, the fitness can be defined on a comparison of current value to these two. 

Number of weights (n): Nmin and Nmax are defined similarly. So is the fitness criterion. 

Training accuracy (a): Since it is a binary classification problem, a random classifier can statistically achieve 50% 

accuracy. So 0.5 becomes the baseline. The number 4 is a scaling coefficient to emphasize the accuracy more. 

2.4.2 Chromosome 

In GA, one chromosome is one candidate solution, and the genotype is the genetic composition of one candidate [2]. 

For our experiment, one chromosome is one FNN trained on the dataset, characterized by different hyperparameter 

settings. Therefore, a dictionary data structure is used to represent the genotype and then used to describe a candidate 

solution Table 4 shows the different genes and their value type. The clamp values in the third column are obtained 

manually by observing a few pre-experiment trails. 

Gene Value type Clamp 

Number of neurons in first hiddenly layer Integer [10, 30] 

Number of neurons in first hiddenly layer Integer [5, 30] 

Number of epochs Integer [7500, 20000] 

Learning rate Float [5e-5, 5e-3] 

Weight decay Float [5e-5, 5e-3] 

Table 4.  

2.4.3 Selection 

The selection operator is directly associated with the concept of survival of the fittest in GA [2]. The concept of 

selective pressure is used to compare different selection operators. It is a measure of the degree of emphasizing on 

better solutions, and there is a trade-off between that and population diversity. We shall compare two selection 

operators. 

2.4.4 Crossover 

The crossover process is to generate one or more individuals by combining genes from randomly selected parents that 

pass the selection phase [2]. In our experiments, we use the sexual category of crossover where each offspring is 

produced by exactly two parents, since we want the gene combination (why not asexual) and the genotype size is not 

large (why not multi-recombination). All genes in our chromosome setting are of continuous value, so we shall 

experiment with two different floating-point-presentation crossover algorithms proposed in [2]. 

2.4.5 Mutation 

The mutation process randomly changes the value for genes, which introduces new genetic material and therefore 

increase the population diversity [2]. From the optimisation perspective, mutation can be viewed as a random walk in 

search space. We use the famous uniform mutation for all genes and experiment with different mutation rates. 

3 Results and discussion 

Since the running time of GA is rather long and our time is limited, all results reported in this section are an average of 

2 runs of GA. We examine different approaches and parameters in GA in order, so the optimal value obtained shall be 

used and verified in all later steps. 
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The first report is on the best hyperparameter setting found by the experiment in Table 5, which is defined by best 

convergence ability and speed in training (and numerically evaluated by the fitness function). The above results cannot 

be compared to [10], as they do not provide a report on convergence speed and ability, which is not their research focus. 

 Best found by GA Baseline Best found by casper 

Fitness value 3.1369 2.5380 2.9612 

Train accuracy (%) 86.13 75.44 74.03 

 

 Number of neurons 

in 1st hidden layer 

Number of neurons 

in 2nd hidden layer 

Number of 

epochs 

Learning 

rate 

Weight decay 

Best found by GA 30 6 7500 0.00137 5e-5 

Table 5.  

3.1 Population size and number of generations  

The efficiency and effectiveness of algorithms treated with GA are dependent on achieving a balance between 

population size and the number of generations [4]. We study the effectiveness of GA in different settings of population 

size and the number of generations while keeping the total number of searched solutions constant - 400. The reasons for 

setting it to 400 are that 400 already produces good solutions and GA takes hours to run while our time is quite limited. 

The optimal setting found is population size being 20 and generation being 20. Table 6 shows the details. 

 POP_SIZE=5 

N_GEN=80 

POP_SIZE=10 

N_GEN=40 

POP_SIZE=20 

N_GEN=20 

POP_SIZE=40 

N_GEN=10 

POP_SIZE=80 

N_GEN=5 

Best fitness value in 

final generation 

2.6766 2.7003 2.9243 2.9132 2.8771 

Avg fitness value in 

final generation 

2.545 2.5934 2.6538 2.3119 2.1052 

Variance fitness value 

in final generation 

0.0044 0.0094 0.1014 

 

0.1038 0.2001 

Best fitness value in all 

generations 

2.7557 

 

2.7946 3.0115 2.9502 3.0871 

Table 6. 

We see that a small population size results in the individuals in the final population being not so fitted to the 

environment even after a large number of generations, and this suggests an over-emphasis on exploitation. The result of 

the reverse setting is that though the best individual has high fitness value, the average of final population is quite low, 

indicating a large portion of underfitting individuals; and it clearly reveals search process of such setting is quite 

insufficient of exploitation. Balanced population size and number of generations is a good trade-off of exploration and 

exploitation, which obtains a stably good final population along with finding optimal fitness value. Figure 2 shows the 

training process of the optimal setting. 

 

Fig. 3.  

3.2 Mutation rate 

GA as a search approach, its mutation process is a key control to exploitation. Intuitively, a higher mutation rate 

emphasizes more on exploitation. We experiment with a few different mutation rates and report their impact in Table 7. 

We see that although the best fitness value is found under 0.01, its overall fitness of the final population is slightly 

worth than that of 0.002. A general trend is that higher mutation rate leads to more emphasis on exploration over 
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exploitation. A relatively high mutation rate explores more, but these explorations are undirected random search, so it is 

not robust to find a good solution. These conform to the effect of mutation rate. 

Mutation rate 0.002 0.01 0.05 0.2 

Best fitness value in final generation 2.9894 2.9243 3.0103 2.6631 

Avg fitness value in final generation 2.7583 2.6538 2.4538 2.1315 

Variance fitness value in final generation 0.0534  0.1014 0.1239 0.3313 

Best fitness value in all generations 3.0115 3.1041 3.0103 2.9084 

Table 7.  

3.3 Selection algorithm and crossover algorithm 

There are two candidate selection algorithms and two crossover algorithms. For selection, [7] proposes proportional 

selection and we propose its Laplace smoothing version. The formula is in Figure 4. For crossover, we study blend 

crossover and the simulated binary crossover (SBX) proposed by [9] and [11] respectively. The formula is in Figure 5. 

 

Fig. 4. Top – proportional selection; Bottom – its Laplace smoothing 

 

Fig. 5. Left – blend crossover; Right – simulated binary crossover 

We experiment with the 4 combinations and report the results in Table 8. Based on the results, we see that compared to 

the other one, smoothed proportional selection and SBX results in a less fitted final population, so we can conclude that 

they emphasize more on exploration. 

Selection, crossover combination Blend + 

proportional 

Blend + 

smoothed 

proportional 

SBX + 

proportional 

SBX + 

smoothed 

proportional 

Best fitness value in final generation 2.9243 3.0442 2.9891 2.7303 

Avg fitness value in final generation 2.6538 2.4011 2.5436 1.7388 

Variance fitness value in final generation 0.1014 0.2695 0.2548 0.2641 

Best fitness value in all generations 3.1041 3.0834 3.1369 3.1173 

Table 8.  

4 Conclusion and future work 

We applied genetic algorithm to find the optimal hyperparameter setting of an FNN trained on dataset-thermal-stress, 

results from a stress stimuli experiment. The optimal criterion is defined on the convergence speed and ability of a 

model. The reported optimum found by GA in our experiment has an increase of 24% of fitness value from baseline. 

During experimenting with different genetic algorithm architectures, by studying statistical properties of the final 

population, we conclude that exploration-exploitation trade-off is important for the performance of GA and different 

architectures have different implications. In future work, we can refine the fitness function and finds a more systematic 

criterion. Also, vector-based crossover algorithms such as parent centric crossover proposed by [14] can be examined as 

we only experimented with scalar-based crossover algorithms.  
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