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Abstract 

 For the image compression, we would use a 3-layer-neural network to compress a set of image features and 

set the target equal to the input.[1] In addition, for the pruning strategy, the Singular Value Decomposition will be 

used to compress the weights between the hidden layer and the output layer. The parameters such as the number 

of epochs, the number of units of the hidden layer in the original network and the required accuracy of the SVD 

will be tested by different values and displayed in the paper. 
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Introduction 

 Image compression: 

  Image compression is a traditional and developed technique. In the process of image compression, the 

features of an image will be extracted first, then the information of the images will be encoded or represented 

using less information. 

  Taking JPEG for example, it uses 8x8 block in Discrete Cosine Transform (DCT), then adapts run-

length encoding to exploit the sparsity pattern of extracted frequency coefficients. Quantization is applied on 

coefficients to realize different compression level. [5] 

   

 Dataset: 

  In our dataset, SFEW (Static Facial Expressions in the Wild), the features have been provided in the 

form of .xlsx tables. Each term in the table consists of 12 columns. The first column represents the image names. 

The second column indicates the label of the image, the number(from 1 to 7) indicates the category of the image.  

The 3rd to the 7th column are the First 5 Principal Components of Local Phase Quantization (LPQ) features Local 

Phase Quantization (LPQ) features. The 8th to the 12th columns are the First 5 Principal Components of Pyramid 

of Histogram of Gradients (PHOG) features.[4] 

  Local phase quantization (LPQ) is an extension of local binary pattern (LBP), which is the basic of 

facial expression recognition. The pyramid of histogram of oriented gradients (PHOG) is an extension of HOG, 

which counts occurrences of gradient orientation in certain portions in an image.[4] 

  

 SVD: 

  SVD is a kind of decomposition of a m*n matrix(m<n), which can be represented in the form of a m*m 

orthogonal matrix multiply a m*n matrix, consists of a diagonal matrix and rest numbers are zeros, multiply a 

n*n orthogonal matrix. We can decompose the whole formula to make an approximation of the m*n matrix by a 

m*k matrix multiply a k*k matrix multiply a k*n matrix where k<m. [2] 

  Using SVD, we can decompress the weights matrix(m*n) between the hidden layer and the output layer 

to 3 matrices and the number of weights is (m+n)*k to make (m+n)*k<m*n. [2] 

𝐴𝑚×𝑛  =   𝑈𝑚×𝑚𝑆𝑚×𝑛𝑉𝑇
𝑛×𝑛 

𝐴𝑚×𝑛  ≈  𝑈′𝑚×𝑘𝑆′𝑘×𝑘(𝑉𝑇)′𝑘×𝑛 



  To get 𝑆′𝑘×𝑘, we sort the singular values on diagonal of 𝑆𝑚×𝑛, which consists of a diagonal matrix and 

the rest are zeros. And extract the first 𝑘 values then combine them with corresponding values in  𝑈𝑚×𝑚 and 

𝑉𝑇
𝑛×𝑛.[2] 

 

 Model: 

  Our network is the 3-layer fully connected model made up with input layer, hidden layer and the output 

layer. The numbers of units in input layer and the output layer are both 11. The number of units in hidden layer is 

less than 11. We will discuss the selection of the number below according to the accuracy and the loss. The input 

is the features (label, the First 5 Principal Components of LPQ and the First 5 Principal Components of PHOG) 

of a certain image in the SFEW dataset. The target output is identical to the input. For the first unit of input and 

output, what we apply is classification. For all units, we will apply image compression. Adam will be the optimizer 

of the model. 

 

Fig. 1. Feed-forward network of three layers of processing units. The layer on the left hand is input layer; the layer on the right hand is 

output layer; they have the same neuron number. The hidden layer in the middle has fewer neurons. 

 

Method 

 Preprocessing: 

  Ignoring the 1st column, we extract the rest 11 columns as our dataset. Then we fill 0s to all the NaN 

values in our dataset. Our inputs are the 11 features of data, which is identical to our target output. We will split 

our dataset as training set and test set by the in-built function. 

  As for the model, we define an input layer with 11 units, a hidden layer and an output layer with 11 

units. The number of neurons in the hidden layer is less than 11. We will compare the results of different value of 

it below. As described, the network is fully connected. We choose to use Sigmoid as the activation function of the 

hidden layer. 

  

 Train: 

  In training process, we just train the network using back-propagation. The back-propagation method 

would be slow, the shortcomings will be discussed blow. 

  

 Decomposition: 

  For our trained model, we can regard the weights from the hidden layer to the output layer as a weight 

matrix. We may apply SVD to the weight matrix to reduce the number of the weights to improve the speed. The 

SVD process can be accomplished by an in-built function. We then can choose k value to decompose the m*n 



matrix to 3 matrices (m*k, k*k, k*n). In the model, we may add an extra layer to represent the singular values. 

We can set the bias of the extra layer as the k singular values. Besides, the weight matrix between the hidden layer 

and the extra layer can be indicated by the m*k matrix. The weight matrix from extra layer to the output layer can 

be illustrated as the k*n matrix. 

  

 Test: 

  We can test our original network (the one without SVD) and compressed model (the model with SVD) 

then compare the result. In this experiment, I chose the accuracy of classification (only for the first output of the 

output layer) and the mean square loss. Additionally, for the classification, as the target output is integer, we will 

convert our first output in the output layer to integer then compare the value with the target output. If they are 

equal, the result is correct. If not equal, the result will not be considered as correct. The classification accuracy is 

(number of correct outputs/number of all outputs). 

 

(a) One layer in an original model. [3] 

 

(b) Two corresponding layers in a new compressed model. [3] 

Fig. 2. Model conversion in a neural network before and after SVD. [3] 

 

Results and discussion 

 Decide the number of training epochs: 

  Firstly, we fix the compression accuracy to 0.9 and the number of units in hidden layer to 10, then try 

different number of epochs from 10 to 500, the step is 10(10, 20, 30, ..., 500). For each group, we iterate for 50 

times then we use the mean values of classification accuracy and mean square loss. 

  The result is displayed here: 



 

Fig. 3. Mean value of loss and classification accuracy using different number of epochs, with compression accuracy set to 0.9 and hidden 

units number set to 10. 

 

  We can observe that for the original network, the classification accuracy will go up first then decrease 

at where the number of epochs is about 300. The test loss will go down first then slightly climb at about where 

epoch number is 300. For the compressed network, our classification accuracy will increase then reduce at where 

epoch number is about 30. The loss will decrease first then obviously increase at the point where epoch number 

is 30. 

  Since our goal is to compress the network, we can choose the number of epochs 30. 

   

 Decide the number of units in hidden layer: 

  Firstly, we fix our compression accuracy as 0.9 and the number of training epochs as 30. We try different 

unit number in hidden layer, from 10 to 2. 

 

Fig. 4. Mean value of loss and classification accuracy using different number of hidden units, with compression accuracy set to 0.9 and 

epoch number set to 30. 

 

  We can observe from the figure that as the number of units in hidden layer grows, the loss of original 

and compressed network will both decrease. The classification accuracy of the two networks will both go up. We 

can observe that when unit number is 8, there is an obvious decrease in loss for compressed network. 

  So, we may choose 9 as our hidden unit number. 

   

 Decide the required compression accuracy: 



  Firstly, we fix our num of hidden layer to 9 and the number of epochs to 30. We try different accuracy 

from 0.5 to 0.9, the step size is 0.1. We will compare the time cost of original network and compressed network 

using different required compression accuracy. For each accuracy value, we loop for 50 times then calculate the 

mean value. 

  The results are shown below: 

 

Fig. 5. Mean value of test time using different compression accuracy, with hidden unit number set to 8 and epoch number set to 30. 

 

  We can observe that if we choose our compression accuracy as 0.7 the compressed network will be less 

time-consuming, where the k value is 3. The 9*11 weight matrix in the original network will be replaced by a 

9*3matrix and a3 81 matrix. The total weight number will be compressed from (9*11) to (9+11)*3. 

  So, we may choose 0.7our required classification accuracy. Notice that because the train and test set 

are different every time the program runs, the results might be slightly different. For example, when we choose 

compression accuracy as 0.7, the k value night be 3 or 4. But the improvement of the test speed can still be 

observed. 

 

 Discussion: 

  There are some drawbacks of back-propagation. The main shortcoming of the back-propagation is 

that it can be slow to train networks, and that the architecture required for a solution to a problem is not 

currently determinable a priori.[1] In our SVD process, we can only improve the speed in the test section after 

the training process. 

  And there is no comparison with the distinctiveness of the original paper (T.D. Gedeon & D. Harris, 

“PROGRESSIVE IMAGE COMPRESSION”). In this paper, the comparison of angles between vectors is applied 

to determine which vector to prune. If the angle between two vectors are too small or too large to complementary, 

one of the two will be prune in the network. 

  

Conclusion and future work 

 Conclusion: 

  The SVD can be applied to the 3-layer network image compression. And it is efficient for saving time 

because we have tested it. 

 

 Future Work: 

  We may compare the effects using SVD and the pruning method(distinctiveness) in the original paper 

about Progressive Image Compression using angles between vectors to judge the distinctiveness of vectors to 



prune. 

  Another aspect is that the SVD is usually used in Deep leaning, so we may try to create a deep learning 

model to apply the SVD and compare its effects with our 3-layer model.[3] 
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