
Distinctiveness Pruning Based on Simple Neural

Network

Boyuan Zheng

Research School of Computer Science, Australian National University

Abstract This report based on SFEW dataset and discussed distinctiveness pruning on

a 4-layer convolutional neural network (CNN) combining with 4 fully connected network

and the performance comparison between CNN, principal component analysis (PCA) and

residual network (ResNet). Based on our experiment, we found our CNN model perform

better in this emotion classification problem. Furthermore, the distinctiveness pruning

could accelerate the learning process and promote the model to converge more quickly.

This report also includes our experiment process and some problem we met during the

experiment and the way we solved it.

Keywords: Distinctiveness pruning, Convolutional neural network, Neural network

1 Introduction

In order to restore real-word facial emotion detect environment, we select SFEW (Static Facial

Expressions in the Wild) Dataset as data source. SFEW Dataset provides more realistic and natural

emotions and covers facial expressions with various head poses, large age coverage and so on (Dhall

et al., 2011).The dataset is composed of 675 images coming from different movies and classified into

7 directories representing 7 kinds of emotion: angry, disgust, fear, happy, sad, surprise and one

neutral emotion. Many researches related to emotion classification and CNN have been done in

recent years. Cao et al. (2019) used the EEG signal and CNN to classify the emotions; Abdul Qayyum et

al. used a unique CNN to classify the emotions during the speech. Based on their research and SFEW

dataset, we try to find out the questions:

How much improvement could CNN provide comparing with principal component analysis (PCA)?

How much improvement could distinctiveness pruning provide?

Performance comparison between residual network (ResNet)by implementing transfer learning

2 Method

The network architecture used in this report is a 4-layer convolutional neural network (CNN)

combining with 4 fully connected network. In order to figure out best hyper parameters, suitable

activation function and optimizer, we adopt 5-fold cross validation. The pruning method is inspired by

T.D. Gedeon, which prunes the “least different hidden neuron” (Gedeon T., 1995).

2.1 Data input and pre-processing

In data input part, we use os and tqdm these two libraries to load the images from various directories.

The colourful images with the size of 576*720 are labelled by their directories, e.g. the images from

the first directory would be labelled as 0. Then we pre-process the images into 227*227 size in order

to reduce the computational cost and maintain the information at the same time. For later

comparison part, we rescale the image size to 224*224 to fit the input of ResNet.

2.2 Define neural network

Convolutional neural network is efficient to extract features and usually used to deal with image

inputs. To define a good convolutional neural network, the most important part is to determine the

hyper parameter. we initially set the hyper parameter as: learning rate = 0.01, epoch = 300, batch size

= 8 and a CNN which could extract 512 features with 6*6 size. After experiment, we found it is

inappropriate and unnecessary to use these huge number of features and the learning rate is still too

large to train a model, reducing the feature size could enlarge the batch size. In this case, we finally

set the hyper parameter as: learning rate = 0.0006, epoch = 50, batch size = 32 and a CNN which could

extract 64 features with 6*6 size (see table 1).

Initial setting

(output channel, output size, filter size, stride, padding)
Final setting

(same as initial setting format)

Conv_1 (64, 55, 11, 4, 0) (16, 55, 11, 4, 0)

Conv_2 (128, 26, 5, 2, 0) (32, 26, 5, 2, 0)

Conv_3
(256, 24, 3, 1, 0) (64, 24, 3, 1, 0)

Max pooling: (256, 12, 2, 2, 0) Max pooling: (64, 12, 2, 2, 0)

Conv_4
(512, 12, 3, 1, 1) (64, 12, 3, 1, 1)

Max pooling: (512, 6, 2, 2, 0) Max pooling: (64, 6, 2, 2, 0)

Fc_1 512*6*6 to 4096 64*6*6 to 512

Fc_2 4096 to 2048 512 to 128

Fc_3 2048 to 512 128 to 64

Fc_4 512 to 7 64 to 7
Table 1: Hyper parameter setting

This changes also accelerate the training speed significantly. With less epoch and less inputs towards

the fully connection layer, the total time to run a 5-fold cross validation reduces by at least 10 times

and the time spend on each epoch reduces to about 2 seconds. As for choosing the activation

function and optimizer, we initially used ReLU activation function with Adam optimizer, it could get

reasonable result without distinctiveness pruning but the angel between each weight vector doesn’t

change very much which is not suitable to implement distinctiveness pruning. In this case, we finally

set the activation function and optimizer as Sigmoid and Adam.

2.3 implement pruning method

Pruning plays a signification role in neural network. Since extra neurons would contain nearly

duplicated functionality as other existing neuron and slow down the speed of the network by

increasing the network size. (Gedeon T., 1995) PyTorch already provide a dropout function to drop

some neurons according to customized dropout possibility. But this dropout function isn’t smart

enough since it might drop some functionally distinctive neurons. In this case, T.D. Gedeon presented

a new kind of pruning method based on distinctiveness theory (Gedeon T., 1995). The main idea is

calculating the distinctiveness of weight vector angle for each neuron and based on angle threshold to

determine whether or not to remove that neuron. Like T.D. Gedeon (1995) said, distinctiveness

pruning could be somehow “computationally relatively complex”. Adding distinctiveness pruning

would significantly increase the running time but this pruning method could dynamically eliminate the

redundant neuron and help the model converge more quickly. There are 3 possible weights matrix

provided in the article: input weights matrix, hidden to output weight matrix and full weights matrix.

This report is focusing on using hidden to output weight matrix to calculate the distinctiveness angle.

we firstly add a mask in network class to filter the output like existing dropout function, but we found

this method is not enough. Then we add a function to set pruned neurons’ columns of weight matrix

to zero as well as their gradient. In this part, we meet an error “RuntimeError: Leaf variable has been

moved into the graph interior”, which means some in-place operation occur and change the leaf node

to non-leaf node. we fixed this problem by using “.detach().fill_(0)” instead of simply assigning the

value.

2.4 evaluation

In evaluation part, we initially separated the input data into 2 parts, 80% for training and 20% for

testing, then using confusion matrix to do evaluation. This method isn’t reliable and has uncertainty,

this would make the hyper parameter evaluation struggle. we modified the problem by implementing

5-fold cross validation. Although it needs much more time to run, its outcome would be more reliable

and convincing.

3 Results and Discussion

After determined the parameter and network design, let’s go back to the previous questions.

I. CNN vs PCA
we started with PCA method firstly, we used each top 5 principal components from 2

descriptors, LPQ and PHOG. And then implement a basic neural network with 450 training

epochs to do classification (see Figure 2, x axis reflects epoch, y axis reflects loss).

Figure 2: Result of PCA neural network without pruning

Then we used a 4-layer CNN combining with 4 fully connected network without implementing

other methods, part of the result shows in Figure 3 (x axis reflects epoch, y axis reflects loss).

Figure 3: Result of CNN without pruning

By comparing Figure 2 and Figure 3, we can conclude that CNN uses less training epoch to

train the network but CNN needs more time to run, and for this particular case, CNN might be

better to classify the emotions, since the model learns relatively quicker and validation

accuracy is relatively higher.

II. CNN with pruning vs. CNN without pruning
In this section, we aim to compare the CNN with pruning and the CNN without pruning. In

order to interpret the significance of distinctiveness pruning, we changed the angel threshold

from 15° to 25°. Because of the significant amount of calculation (there are 512 hidden

neurons in first hidden layer and they would generate 130,816 angel combinations), we only

display the result of CNN with pruning on second hidden layer (see Figure 4, x axis reflects

epoch, y axis reflects loss), and due to the same reason, we didn’t plan to present the graph

about the angle changing tendency.

Figure 4: Result of CNN with pruning

Although the result could vary from time to time, the above result shows that the result of

CNN with pruning would get slightly better result than ordinary CNN. And one thing we found

really interesting is the pruning process usually generates a turning point in loss graph while

ordinary CNN tends to be smoother. We think the turning point might interpret the pruning

process accelerates the convergence of the loss graph and show the significance improvement

by pruning the similar function neurons. This finding might support T.D. Gedeon's theory

about distinctiveness pruning. Comparing with T.D. Gedeon’s result, this report finds the same

conclusion. While the pruned neuron isn’t too much, the result would be similar to the neural

network which haven’t done pruning. With less hidden neurons, the network could learn

faster and save significant time for restarting the training process from scratch ((Gedeon T.,

1995).

III. CNN from scratch vs. ResNet by transfer learning
Transfer learning is like “buying the suitable shoes” and training the network to fit the

particular situation. There are mainly 2 approaches to adopt transfer learning: Finetuning the

network; use the network as fixed feature extractor. In this report, we use finetuning as an

example. Since the computational limitation, we only experiment the ResNet with 18, 34, 50

layers (Chilamkurthy, 2020), the result shows in Table 2 (result image in Appendix).

 CNN ResNet18 ResNet34 ResNet50

Training accuracy 99% 99% 99% 99%

Testing accuracy 35% 33% 31% 34%

Table 2: comparison between CNN and ResNet

It is very strange that the transfer learning performs worse than CNN from scratch. We think

the possible reason might be the SFEW dataset is composed of the more real-world image, so

that it might contains more real-world information as noise. In this case, these models might

not perform enough well as we expected.

4 Conclusion and Future Work

This report discussed distinctiveness pruning on a 4-layer CNN combining with 4 fully connected

network and the performance comparison between various network. Based on experiment we found:

PCA with ordinary neural network couldn’t perform as well as CNN on this emotion classification

problem, this situation might be caused by PCA provided limit number of features; distinctiveness

pruning performs well in this particular case and it usually generate a turning point in loss graph; by

comparing the CNN with 3 kinds of ResNet, we think the SFEW dataset highlight the real-world

situation so that transfer learning perform not enough well in this task.

The result in this report exists high degree of overfitting problem, future research could implement

methods like regional separation to solve the overfitting problem. Besides this, pruning makes

improvement on network learning speed but couldn’t improve the performance, the future work

could focus on modifying neuron’s behaviour by modifying their distinctiveness angle instead of

dropping neurons. Maybe when the neuron’s vector angle reaches the threshold, future method

could turn similar neuron to other direction.

5 Reference

Gedeon, T., 1995. Indicators of hidden neuron functionality: the weight matrix versus neuron

behaviour. Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial

Neural Networks and Expert Systems.

Dhall, A., Goecke, R., Lucey, S., Gedeon, T., 2011. Static facial expression analysis in tough conditions:

Data, evaluation protocol and benchmark. Proceedings of the IEEE International Conference on

Computer Vision.

Cao, G., Ma, Y., Meng, X., Gao, Y. and Meng, M., 2019. Emotion Recognition Based On CNN. 2019

Chinese Control Conference (CCC).

Abdul Qayyum, A., Arefeen, A. and Shahnaz, C., 2019. Convolutional Neural Network (CNN) Based

Speech-Emotion Recognition. 2019 IEEE International Conference on Signal Processing, Information,

Communication & Systems (SPICSCON).

Chilamkurthy, S., 2020. Transfer Learning For Computer Vision Tutorial — Pytorch Tutorials 1.5.0

Documentation. [online] Pytorch.org. Available at:

<https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html?highlight=transfer>

[Accessed 28 May 2020].

6 Appendix

 ResNet18:

 ResNet34:

 ResNet50:

