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Abstract: Creating detailed maps of tree species in forests is a useful, albeit prohibitively expensive process. Using 

features about forests and satellite data, neural networks were trained using backpropagation to classify forest plot species 

as dry sclerophyll. These neural networks were pruned by 4 to 20% and performed within 1% of each other on the testing 

data set. Other neural networks were trained using genetic algorithms which outperformed the backpropagation neural 

networks by only 1.94%. This means that backpropagation neural networks can compete with genetic algorithms in 

accuracy and speed for future training.  
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1 Introduction 

Detailed maps of forests are useful for forest management purposes. However, collecting data for such detailed maps is 

typically a prohibitively expensive process [1]. The areas being studied can also change significantly over short periods 

of time, making previous surveys inaccurate. It is desirable to instead determine forest attributes automatically as these 

can be frequently updated for much less cost. Automatically gathered information such as altitude, rainfall and satellite 

imagery data can be used as features for neural networks to classify the species of trees in a forest.  

In recent years, neural networks have become a popular method for solving classification problems and often outperform 

other methods such as decision trees and maximum likelihood. This is because, when given enough training data, they 

can more accurately define nonlinear boundaries between the classification classes. 

Backpropagation is one commonly used method to train neural networks as they are easy to understand and implement. 

Backpropagation involves calculating the gradient of the loss function with respect to the weights of a neuron and adjust 

the weights of the network to reduce the loss function. The major disadvantage for using backpropagation is that it can 

be slow to train networks and the optimal network architecture cannot be identified prior to training. In practice, this leads 

to neural networks with a larger number of hidden nodes than required, which in turn slows the training process as well 

as classification [1].  

Some of the disadvantages of backpropagation can be reduced by performing pruning on the network after it has finished 

training. This process identifies neurons which produce similar or opposite output and thus can be removed as they 

perform the same function in the neural network. Removing neurons that are not necessary for the network to function 

can improve computational speeds as less calculations are necessary when classifying new data points or when doing 

further training [4].  

Genetic Algorithms are another commonly used method to train neural networks for the same reasons outlined above and 

address the speed shortcomings of backpropagation. Genetic algorithms work by mimicking the natural process of 

evolution. They generate a random initial population which is then evolved through the breeding process of crossover and 

mutation which aims to breed the best characteristics of the top performers each generation for the next. Genetic 

algorithms are typically faster and more efficient than backpropagation as they quickly search the solution space for a 

result that is often good enough. This is especially useful in most real-world scenarios when the solution space is complex 

with many local optima [3].  

In this paper, we will be comparing the classification accuracy of 3-layer feed forward neural networks, before and after 

pruning, that have been trained using backpropagation against unpruned neural networks trained with genetic algorithms. 

The goal is to compare the performance of the backpropagation neural network before and after pruning against the neural 

network trained with the faster genetic algorithm method. 



2 Method 

2.1 Data 

Geographical data (GIS) from the Nullica State Forest on the south cost of New South Wales was used. The area was 

broken up into a grid of 179,831 pixels each of which were 30 by 30m in [3]. The database contained 190 samples with 

the following features: aspect information, altitude, slope, geology, topographic position, rainfall, temperature and seven 

TM satellite bands. 

The input data was encoded as described by Milne et al. (1995) except for topographic position and geology. The 

topographic position feature was encoded as a discrete variable using the following function 𝑒𝑛𝑐 =
𝑡𝑝−16

80
 as the only 

possible values were 16, 32, 48, 64, 80 and 96. The meaning of the geology feature was unknown although as can be seen 

from Figure 1 below, each pixel most commonly corresponded to one of the values 50, 70 or 90. This feature was encoded 

using the following discrete mapping: 50 = 0.33, 70 = 0.66, 90 = 0.99, 𝑒𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔 𝑒𝑙𝑠𝑒 = 0. 

 

Figure 1 Geology feature (from lecture slide COMP4660 NN05 pp. 11) 

The output data had values of 90 and 10 which labelled the datapoint as being dry sclerophyll or not and were scaled to 

1 and 0, respectively. The training set was a random 80% selection of the GIS dataset and the remaining 20% was used 

for the testing set. 

2.2 Neural Network Architecture 

The neural network consisted of a 3-layer feed forward architecture with 17 input neurons, a varying number of hidden 

neurons and one output neuron. The middle, hidden layer was tested with starting node amounts of 50, 40, 20 and 14. 

These numbers were chosen arbitrarily except for 14 which was the number of nodes used in the original GIS classification 

paper by Milne et al (1995).  

All the input features from the dataset were used so that the performance of these neural networks could be compared to 

the performance of the networks in the GIS classification paper. This aims to serve as a base performance level which 

can be improved upon. The output layer is a single node as the classification problem is only to determine whether the 

forest species is dry sclerophyll or not. If the output produces a value above a certain threshold, then the neural network 

believes that feature pattern belongs to a dry sclerophyll species otherwise it does not. 

The neural network was trained and verified using the same methods of back propagation on the training set until the 

error on the test set was minimal (ibid). This was confirmed by a 5k cross-validation performed on the training set to help 

prevent overfitting. A k value of 5 was chosen as it would result in a training test data set of approximately 30 which is 

close to the size of the validation test data set.  

Binary cross-entropy, a sigmoid activation function, was used as the loss function because it is suitable for class 

classification when there are two classes. The optimisation function used was stochastic gradient descent as that is what 

is being compared in the paper. 

2.2.1 Pruning 

The pruning step was completed after training finished and followed the similarity methodology described by Gedeon 

and Harris, 1991. The output of each neuron in the hidden layer was compared pairwise and the vector angles of the 

neuron’s output were calculated using dot product. If the angles were above 165 (complementary) or below 15 (redundant) 

for two neurons, then one could be removed from the network. 

2.3 Genetic Algorithm Architecture 

The genetic algorithm was used to train a 3-layer feed forward architecture with 17 input, 14 hidden and 1 output neuron. 

Only 14 hidden neurons were used as the performance of the neural network did not vary by much when using other sizes. 

The genetic algorithm optimised the weights of the neural network and thus, each chromosome was a list of 252 numerical 



values in the range [-1, 1]. The population size, number of generations and mutation rate were 100, 50 and 1% respectively 

as larger values did not have a big impact on performance. 

2.3.1 Fitness 

The fitness metric for the genetic algorithm was just the accuracy of the neural network on the training data set. This 

ranged from 0 to 100.  

2.3.2 Breeding 

Each generation, the top 10% of the population was chosen as the potential pool of parents used for breeding. 50 sets of 

parents were chosen from this pool at random and bred together using 2-point crossover to create two children. Each gene 

in the chromosome had a 1% chance to mutate to another value in the range [-1, 1]. These operations helped to prevent 

the genetic algorithm from stagnating in a local minimum and constantly introduce diversity into the population. 

2.4 Evaluating performance 

The performance of the neural network was evaluated by creating a confusion matrix to see how often the dry sclerophyll 

forest species was correct classified. The performance of the network was calculated before and after pruning for 100 

neural networks to avoid initial starting weight biases. The averages were compared to see general trends for pruning 

between the different starting neuron amounts. The same process was used to evaluate the genetic algorithms without 

pruning.  

3 Results 

3.1.1 Backpropagation 

Several threshold values were tested as done in Milne et al, 1995 on the backpropagation neural networks to see if a 

difference in performance could be seen. The results in Table 1 and Table 2 are consistent with the results found by Milne 

et al. (1995). As the threshold value is increased, false negative classifications occur more frequently instead of false 

positive classifications. This is desirable as when the model says the classification is a dry sclerophyll, this is very likely 

to be true. This relationship however, is not as strong as the original paper as can be seen if the false positive values are 

compared when the threshold is set to 0.5.   

Table 1 Neural network performance on the training set 

Threshold Correct False +ve False -ve Accuracy 

0.4 95 48 10 0.62 

0.45 106 33 14 0.69 

0.5 108 23 22 0.71 

0.55 106 14 33 0.69 

0.6 106 7 40 0.69 

0.65 96 5 52 0.63 

0.7 80 1 72 0.52 

 

Table 2 Neural network performance on the testing set 

Threshold Correct False +ve False -ve Accuracy 

0.4 23 11 3 0.62 

0.45 26 8 3 0.70 

0.5 26 8 3 0.70 

0.55 27 5 6 0.70 

0.6 28 1 8 0.76 



0.65 22 1 14 0.59 

0.7 19 0 18 0.51 

 

The overall accuracy of the backpropagation trained neural network is 71% on the training data and 70% on the testing 

data. This is a considerable 18.4% and 4.3% increase over the 52.6% and 65.7% accuracies found by Milne et al (1995). 

This increase in performance may be due to the way cross-validation was set up in the original paper as it was not 

described and thus could not be replicated.    

Table 3 below, shows the average number of neurons pruned and the network’s accuracy for both training and testing 

before and after pruning for 100 neural networks. Although pruning the neural network decreases its accuracy, the number 

of nodes removed from the hidden layer is substantial, ranging from 4 to 20%. This suggests that there are many hidden 

neurons that are not contributing to the performance of the neural network. The percentage of neurons removed increases 

as the number of hidden neurons increase. This may be due to the small training data set as more complex or varied data 

points are not present and thus cannot be captured in larger neural networks. This does however, show that pruning neural 

networks can improve the computational performance of a network, as neurons are removed, while only slightly reducing 

its accuracy on this data set. 

Table 3 Average accuracy for 100 neural networks before and after pruning 

hidden 

neurons 

neurons 

pruned 

pre-prune accuracy post-prune accuracy accuracy difference 

training testing training testing training testing 

14 0.53 67.91 71.29 68.19 70.42 0.28 -0.87 

20 1.77 69.52 73.29 69.40 72.67 -0.12 -0.62 

40 5.34 70.30 69.92 71.01 71.05 0.71 1.13 

50 9.67 71.16 68.76 72.88 70.86 1.72 2.10 

 

If we compare the performance of the networks that started with 40 and 50 hidden neurons, we can see that after pruning 

the 50 neuron network we have a similar accuracy to the pre-pruned 40 neuron network. This suggests that you can often 

build neural networks smaller than they currently are. A reasonable starting size for a neural network might be when 

approximately 5% of its neurons are removed when pruning. If too many neurons are removed, it may make it difficult 

to train the neural network on fresh data.  

The performance of the genetic algorithm training the neural network can be seen below in Figure 2 and Figure 3. 

Although the training performance of the neural network is consistently increasing, it does plateau at around 76% 

accuracy. In Figure 3 below, the legend refers to the testing accuracy of the neural networks that placed first, second and 

third in the training phase. As can be seen, the testing accuracy of the neural networks vary up to 10% between each 

generation, however it too generally increases in accuracy across the generations. 

It is worth noting, that although a neural network may have the highest training accuracy, that does not mean that it will 

have the highest testing accuracy. The blue line (first place in training) is constantly overtaken by the grey line (third 

place in training) in Figure 3. This is due to the training and testing data sets being different, which can result in neural 

networks capturing different patterns. The fitness function for the last generation should be changed to test the accuracy 

of the neural network on the testing data set and sorted accordingly to pick the best performers. 
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The genetic algorithm was used to train 100 neural networks and the average of the training and testing accuracies were 

taken. The results of this can be seen in Table 4 below and compared to the backpropagation method pre and post pruning. 

The genetic algorithm outperformed backpropagation training, both pre and post pruning by more than 7.13% in training 

and 1.94% in testing. Although a significant difference exists in training, the difference on the testing data set is small. If 

the GIS dataset has more complex patterns but the sample size is not high enough to capture it, then the genetic algorithm 

may be able to more clearly out perform the backpropagation with more data points. This result means that when training 

a neural network model, developers should choose genetic algorithms if they prefer speed otherwise they should be able 

to choose whichever model is easiest to implement and maintain on this GIS dataset.  

Table 4 Comparing accuracy of backpropagation (pre and post pruning) against the genetic algorithm over 100 neural networks 

 Accuracy (%) 

Training method Training Testing 

Backpropagation Pre-Prune  67.91 71.29 

Backpropagation Post-Prune 68.19 70.42 

Genetic Algorithm 75.32 73.23 

4 Conclusion and Future Work 

We have found that neural networks trained with backpropagation are, on average, able to perform similarly on the GIS 

dataset before and after pruning. These neural networks however, could be pruned by as much as 4 to 20% which can 

lead to considerable computational gains if the size of the neural network is large enough. The genetic algorithm also 

outperformed the backpropagation algorithm before and after pruning by 7.13% on the training data set and 1.94% on the 

testing data set. Although significant on the testing data set, this is a small difference on the testing data set.  

Working from the findings of this paper, future work could include comparing backpropagation against genetic algorithms 

on more diverse data sets. This may lend the results to being more generalized and applicable in more problem domains. 

Pruning the neural networks generated by genetic algorithms and comparing their performance before and after pruning 

may be able to make them even better. Retraining these neural networks after pruning may also help to define the most 

important neurons and make them more efficient.  

  



References 

1. Gedeon, TD & Harris, D 1991, ‘Network Reduction Techniques’, Proceedings International Conference on 

Neural Networks Methodologies and Applications, AMSE, vol. 1, pp. 119-126, San Diego. 

2. Milne, LK, Gedeon, TD & Skidmore, AK 1995, ‘Classifying Dry Sclerophyll Forest from Augmented Satellite 

Data: Comparing Neural Network, Decision Tree & Maximum Likelihood training’, Proceedings 6th Australian 

Conference on Neural Networks, pp. 160-163, Sydney, 1995. 

3. Erenturk, S & Erenturk K 2007, ‘Comparison of genetic algorithm and neural network approaches for the drying 

process of carrot’, Journal of Food Engineering, vol. 78, no. 3, pp. 905-912. doi:  10.1016/j.jfoodeng.2005.11.031 

4. Qiao, JF, Zhang, Y & Han, HG 2008, ‘Fast unit pruning algorithm for feedforward neural network design’, 

Applied Mathematics and Computation, vol. 205, no. 2, pp. 622-627. doi: 10.1016/j.amc.2008.05.049 


