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Abstract. The Cascade-Correlation algorithm was shown to be an effective and useful technique for
training neural networks. However, its performance was problematic in some settings. In response to this,
the CasPer algorithm was proposed. It and its improvements were proven to be more effective, building
more compact networks and solving regression problems. However, little work has been done to investigate
its performance in classification problems. We took a CasPer variant - Layered CasPer with SARPROP -
and tested its ability to gauge depression levels based on human physiological reactions. Setting effective
hyperparameters proved to be a very difficult task, so a genetic algorithm was used to optimise them. The
genetic algorithm performed well, converging on a minimum and reducing the network error. However, even
with optimised parameters, all networks performed equally poorly, rendering any substantial conclusion
impossible.
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1 Introduction

The Cascade-Correlation algorithm (Cascor) [4] was one of the first constructive algorithms that built neural
networks whilst simultaneously training them. It performed well, allowing the network structure to adapt its
topology to the problem. However, it wasn’t a universal solution, having issues with some classification problems
[7]. To overcome these issues, the algorithm was adapted to employ Progressive Back Propagation (RPROP),
resulting in the new CasPer algorithm [15]. This algorithm also used the cascading structure and method of
adding units progressively, but removed the weight freezing technique in favour for a variable learning rate
RPROP, allowing the new units to learn quickly while also allowing the older units to adapt gradually. The
learning rates were also reset when a new neuron was added, giving older units even more opportunity to adapt
to the old network. These changes aimed to prevent the first units from being poor feature detectors, as is
sometimes the case in Cascor. The result was positive, as CasPer was shown to overcome the regression issues,
performing well at the notoriously difficult two spiral problem.

Since then the CasPer algorithm has been improved. Most notably, the Simulated Annealing method, that has
been shown to remove unneeded connections [13], was incorporated into RPROP. This led to the new Simulated
Annealing RPROP (SARPROP) algorithm [16] that increased performance. Finally and more recently, another
improvement was made with Layered CasPer [14] by moving away from the cascade structure to a more standard
network structure: new units didn’t always create a new layer but were added to the current layer, up to a
maximum number.

Fig. 1: Standard CasPer Algorithm vs. Layered CasPer with
2 Unit Per Layer Maximum

Throughout these improvements, CasPer
and its descendants were shown to perform well,
overcoming many of the issues that Cascor had
with regression. However, no research has been
done to investigate whether CasPer overcomes
the classification issues. Thus, we seek to apply
a new CasPer algorithm to a classification prob-
lem and determine whether it has overcome the
issues that Cascor faced.

To test CasPer’s classification ability, we
used an already solved classification problem.
We chose data that examines depression levels
based on human physiological reactions, which
were classified with over 80% accuracy by a stan-
dard, fully connected, single hidden layer neural
network [19]. Given the simplicity of the neural
network used to classify the data originally, the
problem should prove an easy challenge for the
CasPer, opening the path to further investiga-
tion with more difficult problems.

CasPer, along with many neural network
structures and algorithms, has many hyper-
paremeters that should be changed to reflect the
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problem. Often though, the problem space is relatively unknown, thus the setting of hyperparameters becomes a
process of trial and error. In order to overcome this issue, the process of choosing hyperparamaters is considered
a problem in and of itself and so standard optimisation methods are used [2]. We decided to use a genetic
algorithm, which has been shown to work in the past with complex deep learning structures [18].

2 Method

There were three distinct parts to our method: data production/acquisition and processing; optimising hyper-
paramters for a standard neural network model and a CasPer, or newer variation, algorithm using a genetic
algorithm; and, a final validation and confirmation of results. We detail the decisions and methods surrounding
each in turn.

2.1 Data and Processing

Data Production and Acquisition The data was produced by a previous investigation of depression de-
tecting through physiological reactions [19]. The paper goes through in depth the experimental design and data
recording. Here, we only give a brief overview so that later decisions and results have context.

Videos from the 2014 Audio-Visual Emotion Challenge (AVEC 2014) dataset [17] were used as stimuli. These
videos were recordings of individual participants, either reading a paragraph or answering a set of questions.
Each participant self-reported a depression index, by completing the Beck Depression Inventory - II [1]. The
depression index, ranging from 0 to 63, can then be used to produce one of four depression labels: no or minimal
depression (0− 13); mild depression (14− 19); moderate depression (20− 28); and, severe depression (29− 63).
These depression levels were then used as the depression label for each video.

From the 300 video dataset, 16 videos were chosen for the experiment. These videos had similar durations
and were uniformly spread across the depression levels.

Fourteen participants were chosen to watch these videos. We note that no participant understood the Ger-
man being spoken in the videos and additionally had no prior knowledge about depression identification. Two
participants were excluded due to technical issues. Even after this exclusion, the group was balanced in sex.
The final group size of twelve was deemed viable upon comparison to standard preliminary studies in medicine.

Each participant watched all videos, with small gaps between. During the experiment, participants were
attached to sensors that recorded three different physiological responses:

(i) Galvanic Skin Response (GSR): A measure of the electricity flow through the skin, which varies due to
sweating responses, and has been shown to correlate with increasing mental activity [6].

(ii) Pupillary Dilation (PD): Pupil dilation has been linked to changes in mental state [11], as well as positive
stimuli [12].

(iii) Skin Temperature (ST): Has previously been show to be negatively correlated with stress and fear [8].

The data from these sensors was then attributed to the video being shown at the time. From this raw data,
various different features were collected; specifically, per physiological response: 23 for GSR, 39 for PD and 23
for ST.

Three different datasets were created, one for each physiological response, and each with 192 data points,
one for each combination of the 12 final participants and 16 videos.

Data Processing Before being fed into any model, the raw data was processed.
Firstly, the original paper [19] tested the model performance on four different dataset combinations: GSR +

PD + ST, GSR, PD and ST. We implemented methods for each combination to be tested, but our results will
focus on the combined dataset, GSR, PD and ST.

Secondly, the raw data was processed using a min-max scaler. This was done to ensure that all values were
between 0 and 1, preventing any misinformation about relative data importance. This was also done in the
original paper.

Finally, in order to validate the results effectively, we employed cross-validation methods. The dataset was
quite limited, so we wished to use Leave-One-Out cross-validation in order to maximise the training dataset size.
However, this is impossible given the data: each participants entire dataset is needed as it forms one continuous
data representation. Thus, we use the next best option: Leave-One-Participant-Out cross-validation [10]. This
practice is similar to Leave-One-Out cross-validation, but instead of using one single data point as the test set
and cycling through, one participant and their associated data is used as the test set and the participants are
cycled through. Thus, we end up with 12 sets of train/test pairs that we can do cross-validation on.

2.2 Optimising Hyperparameters

There were two distinct parts to our method of optimising hyperparameters. First and foremost, we had to
develop models for a standard neural network and CasPer algorithm whose hyperparameters could be optimised.
Secondly, we developed a genetic algorithm to optimise those parameters. We will cover each of the steps and
the two model designs separately.
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Developing Network Models: Standard Neural Network In order to validate the data and form a good
basis of comparison, we attempted to replicate the results in the paper [19]. Thus, we followed the paper and
constructed a standard, fully connected neural network model. Each network had a single hidden layer and used
the sigmoid activation function for these hidden units. As required by the data, the output layer was 4 units.
The original paper used networks with 50 hidden neurons. We didn’t follow this guideline, but instead allowed
the number of hidden neurons to be a hyperparameter. However, we did follow the training methods in the
paper, using the Adam optimiser [9] for back propagation and the Cross-Entropy loss function.

As is standard, the result for each test was averaged across the cross-validation runs. Additionally, we ran
each test 5 times and averaged those results. Thus, the final result of the network was reported as the average
loss and the average accuracy of classification.

This model has three hyperparameters:

(i) Number of Hidden Neurons: The amount of neurons in the single hidden layer ([1, 100]).
(ii) Learning Rate: The Adam optimiser uses one learning rate ([0.00001, 0.5]).

(iii) Number of Epochs: The number of epochs for training ([10, 2512]).

The parameters were optimised by the genetic algorithm.

Developing Network Models: Layered CasPer with SARPROP We chose to use the latest CasPer
network, given that each improvement should further the network’s ability to solve classification problems.
Thus, we opted to construct Layered CasPer networks that used the SARPROP optimiser.

Both layered CasPer and SARPROP have many different parameters that can be tweaked and varied to suit
the problem. Thus, we have a long list of hyperparameters that can be optimised:

– Learning Rate 1: The learning rate for connections feeding into the newest neuron ([0.05, 1]).
– Learning Rate 2: The learning rate for connections leading out of the newest neuron ([0.001, 0.05]).
– Learning Rate 3: The learning rate for all other connections ([0.0001, 0.001]).
– Eta Up: The multiplicative factor for increasing the learning rates ([0.1, 0.9977]).
– Eta Down: The multiplicate factor for decreasing the learning rates ([1.002, 5]).
– CasPer Epoch Parameter: The network is given 15 + P × N epochs to train the new neuron, where N is

the number of neurons and P is the CasPer epoch parameter ([1, 100]).
– CasPer Error Parameter: Training is halted if the error hasn’t decreased by this multiplicative factor within

the given epochs ([0.9, 0.99999]).
– Hidden Layer Max: The maximum number of neurons in each hidden layer ([1, 10]).
– Weight Decay: The weight decay constant used in the simulated annealing equation:

∂E

∂wij
=

∂E

∂wij
− k × sign (wij)× wij

2 × 2−0.01×Ep

where Ep is the number of epochs since the last neuron was installed, and k is this parameter ([0.00001, 0.01]).

The values after each parameter outline designate the ranges allowed for each parameter. The only possible
hyperparameter that we didn’t vary was the activation function for the hidden neurons. Instead we followed
previous work [15] and the standard network model and used the sigmoid function.

Before using the genetic algorithm, we tried to optimise a subset of the hyperparameters by setting possible
values and cycling through all possibilities and reporting the best combination. The hyperparamaters and their
values were:

– CasPer Epoch Parameter: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
– Hidden Layer Max: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
– Weight Decay Constant: {0.01, 0.005, 0.001, 0.0005, 0.0001}

This was done in order to evaluate the effectiveness of the genetic algorithm: if a simpler approach yields the
same results then the genetic algorithm would be redundant.

Genetic Algoithm In order to optimise the hyperparameters of the two neural network models, a genetic
algorithm was constructed. The algorithm is fairly standard, following the underlying structure of the canonical
genetic algorithm. However, the specifics were tweaked to fit the problem.

Significant changes were made to minimise the computational requirements of the algorithm: the fitness
evaluation already required training and testing neural networks, which is very computationally expensive,
and thus prevents some methods and techniques from being used. Firstly, the canonical model uses (λ, µ)
selection: it chooses the next population only from the offspring. Instead, we used (λ+, µ) selection with an
offspring population size of 20%. Secondly, the fitness of each chromosome was only calculated once and then
stored. To overcome the natural noise, each chromosome was evaluated 5 times and the result averaged. Finally,
the chromosome is not encoded as bitstrings, but instead tuples of each parameter. This was done as each
parameter has very specific bounds and the accuracy needed for some parameters is very high, thus a bitstring
representation would be incredibly long and difficult to decipher.

The functional specifics of the genetic algorithm were constructed to cover as many settings as possible: no
information was known about the search space, so the functions were designed to explore as much as possible
early in the process and then focus only on exploiting the minima in the later generations. Thus, the following
functions were used:



4 E. Hofflin

– Initialisation: A standard approach that uses random uniform sampling over the entire space.

– Mutation: Each chromosome and each gene has its own chance for mutation. Mutation of a gene was
performed by sampling from a Gaussian distribution centered on the original value and with a standard
deviation equal to the square of the distance to the nearest bound. The chance of mutation was gradually
decreased over time.

– Reproduction: Two offspring were created from two randomly selected parents. The offspring’s values used
Simulated Binary Crosover (SBX), which has proven effective in the past [3].

– Selection: A standard approach using proportional Boltzman, with universal stochastic sampling. To reduce
the selective pressure, no replacement was allowed.

– Fitness: As stated above, the fitness method trained and tested the neural network with the hyperparamaters

five times. The fitness is equal to
(
(1.001−accuracy)×loss

)2
. We used 1.001 instead of 1 so that the accuracy

term could never equal 0, rendering the loss term insignificant.

Additionally, we let the population size slowly decrease over time, so that early generations could search more
but not inflate the computational requirements over time.

The algorithm produced four values:

(i) Average Fitness List: the average fitness of each generation.

(ii) Minimum Fitness List: the minimum fitness of each generation.

(iii) Best Chromosome: the chromosome values that had the lowest fitness.

(iv) Minimum Fitness: the fitness of the best chromosome.

In order to validate the genetic algorithm, we first tested it using the standard network model and a glass
identification dataset [5]. This also allowed us to tweak the parameters of the genetic algorithm, optimising it
to perform well on classification problems, before we ran it on the harder problems.

2.3 Final Test and Result Confirmation

We ran the functioning genetic algorithm for optimising network hyperparamters on both models: the standard
feed-forward, fully connected, single hidden layer neural network model and the layered CasPer with SARPROP
model.

After the genetic algorithm, the best chromosome was validated by evaluting its fitness 10 more times.
Additionally, the loss and average were separated out so that they could be analysed.

3 Results and Discussion

We first analyse and evaluate the results of the standard neural network model, before moving onto the Layered
CasPer with SARPROP algorithm. Finally, we compare and discuss both results.

3.1 Standard Neural Network

The results of the genetic algorithm were promising, showing clear convergence towards a minimum:

Fig. 2: Standard Model: Average and Minimum Fitness vs Generation
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Fig. 3: Standard Model: Average and Minimum Fitness vs Generation (logarithmic)

Note that the ‘check’ value is the validation result, showing how the best chromosome performed when
evaluated 10 more times. As expected due to the noise, the ‘check’ fitness is slightly higher. However, the
validation process also yielded a disappointing discovery: the network with optimised hyperparameters only
achieved an accuracy of 29.22%. This was far lower than anticipated, especially considering the significant
optimising done by the genetic algorithm.

3.2 Layered CasPer with SARPROP Results

As noted, before the genetic algorithm was run on the CasPer model, we attempted to optimise the subset
of hyperparameters - Casper Error Parameter, Hidden Layer Maximum, and Weight Decay - by exhaustively
searching through all combinations of preselected fixed values. After running this test 50 times, we got the
following results:

Fig. 4: CasPer Model: Histograms of the Best Parameters over 50 Runs.

These histograms are rather chaotic: no value for any parameter performed significantly better than any
other, providing no insight into the optimal hyperparameter values.

In light of these results, the genetic algorithm performed extraordinarily well:
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Fig. 5: CasPer Model: Average and Minimum Fitness vs Generation

The convergence continued for the entire duration, improving the initial average by several orders of mag-
nitude:

Fig. 6: CasPer Model: Average and Minimum Fitness vs Generation (logarithmic)

The reduction in the fitness was even more significant than the standard model. Once again however, the
validation step produced poor results: the best chromosome had an accuracy of 29.17%.

3.3 Comparison and Discussion

The accuracy of both models was bad, only slightly above guessing. This was poor in and of itself, however it is
dismal when contrasted to the 88% accuracy that the original paper achieved [19]. Not only is this disappointing,
but it is also quite surprising. As discussed, the data is sourced from, and then processed in an identical, or near
identical, manner to the original paper. Thus, we would expect the standard network, being the same model,
to have at least approximately the same accuracy. Futhermore, the original paper didn’t outline any method
for optimising the network hyperparameters, so we would expect the hyperparameters extensively optimised by
the genetic algorithm to result in better performance. Therefore, the results are disappointing and very difficult
to explain.

Setting aside the results from the original paper, both the standard model and the layered CasPer with
SARPROP algorithm had incredibly similar performances, with only a 0.04% absolute difference in accuracy.
Given this, we could surmise that the layered CasPer with SARPROP algorithm performs just as well as
standard network models. However, as the accuracy is so poor, a proper conclusion could potentially be quite
flawed.

Overall, the only positive outcome was the performance of the genetic algorithm. It optimised its fitness
incredibly well, reducing the average fitness by a magnitude of 8 in the CasPer case. Additionally, the convergence
continued as the algorithm progressed, with little variance. So the genetic algorithm is robust and effective.
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4 Future

Given the null result for the effectiveness of CasPer networks on classification problems, any future work will
have significant difficulties building on these results. That said, there are two avenues that should be explored.

Firstly, further research should be done to answer the question of whether CasPer and its descendants do
solve the classification issues of Cascor. We put particular emphasis on this as CasPer has proven itself in many
other areas, and so it would be very useful if this success transfers to classification problems. The models and
methods used in this paper can be employed for this, making the process easier, but a new dataset should be
used.

Secondly, the genetic algorithm did prove to be very effective. Thus, an in-depth analysis into its effectiveness
on optimising network hyperparameters should be conducted. Network hyperparameters are notoriously difficult
to set and optimise, so a good and robust technique would be very useful.

5 Conclusion

The goal was to assess whether either CasPer or one of its descendants had overcome the issues that Cascor
faced with classification problems. Unfortunately, no progress was made in relation to that goal, as the both
standard network and Layered CasPer with SARPROP networks failed to perform well to identify depression
levels based on human physiological reactions. Our only conclusions are that more work should be done to
investigate the issue, and that genetic algorithms are effective for optimising hyperparamters.
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11. Laeng, B., Sirois, S., Gredebäck, G.: Pupillometry: A window to the preconscious? Perspectives on psychological
science 7(1), 18–27 (2012)

12. Partala, T., Surakka, V.: Pupil size variation as an indication of affective processing. International journal of human-
computer studies 59(1-2), 185–198 (2003)

13. Pham, D., Karaboga, D.: Intelligent optimisation techniques: genetic algorithms, tabu search, simulated annealing
and neural networks. Springer Science & Business Media (2012)

14. Shen, T.: Layered cascade artificial neural network (2011)
15. Treadgold, N.K., Gedeon, T.D.: A cascade network algorithm employing progressive rprop. In: International Work-

Conference on Artificial Neural Networks. pp. 733–742. Springer (1997)
16. Treadgold, N.K., Gedeon, T.D.: Extending casper: A regression survey. In: ICONIP (1). pp. 310–313. Citeseer (1997)
17. Valstar, M., Schuller, B., Smith, K., Almaev, T., Eyben, F., Krajewski, J., Cowie, R., Pantic, M.: Avec 2014:

3d dimensional affect and depression recognition challenge. In: Proceedings of the 4th international workshop on
audio/visual emotion challenge. pp. 3–10 (2014)

18. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.: Optimizing deep learning hyper-parameters
through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance
Computing Environments. pp. 1–5 (2015)

19. Zhu, X., Gedeon, T., Caldwell, S., Jones, R.: Detecting emotional reactions to videos of depression. In: IEEE Inter-
national Conference on Intelligent Engineering Systems (2019)


	Optimising CasPer Network for Classification using a Genetic Algorithm: Determining Depression Severity

