Predicting the phone screen-size from users
web-search behaviour

Ferdinand Wittmann

Australian National University, Canberra ACT 0200, Australia

Abstract. This study describes the design of a neural network to accu-
rately predict a person’s phone size from his web-search behavior. Ini-
tially, different network structures are fitted to potential feature sets to
derive an adequate network structure. Afterward, a genetic algorithm
is used to perform feature selection. The results show that our neural
network can predict a person’s phone size with an accuracy of around
50%. Lastly, a network reduction technique was applied to the neural
network in order to derive networks of lower complexity. The reduction
of the network led to a high loss in accuracy, with only a small decrease
in complexity.

Keywords: Neural Networks - Network Reduction - Screen-size Predic-
tion - Genetic Algorithm - Feature Selection

1 Introduction

In this paper, we describe the design of a classifier for predicting a user’s phone
size from his web-search behavior. To predict the phone size accurately, a fully
connected neural network with two hidden layers was chosen. The model is
trained on a dataset from the study ” Understanding Eye Movements on Mobile
Devices for Better Presentation of Search Results” (UEM) that was conducted in
2015 at the Australian National University [2]. The data consists of 42 features
encoding the users’ behavior while using a web search engine. In order to reduce
the feature size, we used a genetic algorithm for feature selection. This neural
network could then be embedded into websites to predict the users’ phone size.
Since computing power varies greatly between different smartphones, another
goal of the paper was to test a technique for post-training network compression.
In this matter, the trained network could be reduced in complexity depending
on the phone’s computing power. For the model compression, we used a network
reduction technique introduced by Gedeon & Harris in 1997, that eliminates
hidden units that a similar or opposite aligned in the hidden layers vector space

[1].
2 Pre-processing of the Dataset

Together with collecting the data, the authors of the paper UEM also did some
statistical analysis on the dataset. The results of this analysis can be seen in

2 Ferdinand Wittmann

fig 1. From this correlation analysis, one can see that 11 from the original 42
features are in statistically significant relation to the screen size. Do do a first
analysis of the network we now create 3 different datasets. The first dataset is
consist of all features with a significanz level lower than 0.01, the second dataset
of all features with a significanz level lower than 0.0 and the third of all features.
For this analysis, the authors assumed that some of the features are Poisson

Mean values Statistics
L M S p-value L M S
Search performance
Search speed Time to first click [s] 7.70 10.47 9.12 0.195
Task completion duration [s] 20.89 24.79 23.08 0.655
Search accuracy Correct answer rate %] 94.44 98.15 94.44 0.589
Search behavior
Fixation duration on SERP Per task [s] 3.97 5.60 5.53 0.087
Per link [s] 2.16 1.89 2.49 * ab a b
Clicks Ranks 1.39 1.52 1.46 0.697
Scanpath Minimal scanpath 2.06 2.76 2.26 o a b a
Compressed sequence 3.33 5.50 4.35 ok a b ab
Compressed minus minimal 1.28 2.74 2.09 * a b ab
Scanning direction Complete rate [%] 96.30 94.44 100 ok a a b
Linear rate [%] 46.30 31.48 57.41 # ab a b
Strictly linear rate [%] 11.11 1.85 9.26 0.087
Linear/ID rate [%] 81.48 55.56 79.63 ok a b a
Strictly linear/ID rate [%] 46.30 25.93 31.48 * a b a
Skip and regression Skip [%] 14.81 22.22 7.41
Regression [%] 53.70 74.07 68.52 a b ab
Scroll Scrolled rate [%] 3.70 20.37 35.19 a b b
Trackback Count 1.07 1.91 1.28 a b a
Search satisfaction 7-point Likert scale 524 4.91 4.20 a a b

*Significant at 0.05 level. **Significant at 0.01 level. ***Significant at 0.001 level. Note. SERP denotes search engine results page, and L, M, and S
denotes large, medium, and small, respectively.
Note. Labels a and b indicate the type of result, “a” type is significantly different from “b”, but not different to “ab”.

Fig. 1. Statistical analysis of the dataset [2]

distributed (E.g., Minimal Scnapath Length) [2]. This underlying information
about the input data can, therefore, be used to transform the corresponding
features, before training the model.

! .
o x> A
mean(X) = \,p_trans form(z) = { A7 * ne= : (1)
se.ox otherwise

The applied transformation can be seen in equation 1. Equation 1 applies the
inverse probability mass function for Poisson distributed variables to each data
point. This results in data points being mapped to there inverse probability
and will increase the impact of outliers. Since we assign data points to their
corresponding probability values, data points smaller and bigger than the mean
can be mapped onto the same value, and we save this information by giving
values before the mean a negative sign. After transforming the corresponding
features, we apply min-max normalization to scale all features between 0 and 1
[6]. Furthermore, categorical data was encoded using one-hot encoding [7].

Predicting the phone screen-size from users web-search behaviour 3

3 The Network

The network was derived in two steps. In the first step, different network ar-
chitectures were compared on the three feature sets that were chosen based on
the correlation analysis. The best network architecture is then used for a genetic
feature selection algorithm (GFS). The goal of the GF'S is to increase the neural
network’s accuracy by excluding features that introduce noise into the data.
The initial network architecture differed in having up to 3 hidden layers and
either 5,10 or 20 hidden units per layer. As activation function, either Tanh or
Relu were chosen [8]. As mentioned earlier, the network architecture was tested
on three different feature sets. The output layer had a size of 3, corresponding
to the labels in the dataset. The dataset used three different phone sizes labeled
as large (L), medium (M), or small (S). On the one hand, the Tanh network was
trained using the adam optimizer with adaptive learning rates. On the other
hand, the RelU network was trained with stochastic gradient descent with mo-
mentum. Momentum uses ” Exponentially weighed averages that can provide [us]
a better estimate which is closer to the actual derivate than our noisy calcula-
tions” [4]. The adam optimizer combines the popular RMSprop optimizer with
stochastic gradient descent with momentum and has shown to successfully train
networks [3].

After the network architecture is decided on, we apply the GFS. The GFS tries to
derive the best feature set in a number of iterations that are called generations.
Each generation has as input a population consisting of a set of binary vectors,
the chromosomes. The chromosomes indicate for each feature if it is activated or
not. Each chromosome fitness is tested by inputting the activated features into
the predefined neural network and evaluating the network’s accuracy (fitness).
Now a new population for the next generation has to be created. Here we sam-
ple the future population from the old population, where the old chromosomes
get selected with the probability function in equation 2. In the next step, we
apply with some probability 2-point crossover and randomly mutate each bit at
a certain likelihood. After letting this algorithm run for several generations, we
were hoping to find the best performing feature set.

fitness(c) — min

,min = argmin fitness(x) (2)

p(e) = > wep fitness(x) —min reP

4 Network Selection

When training the network, we saw that performance would not increase after
adding a third layer, and therefore we decided on a dual-layer network. We
then trained the dual-layer network for the different activation techniques and
with either 5,10 or 20 hidden units per layer and for each feature set. In order
to achieve accurate results, we folded the training set into multiple parts. This
technique is known as k-fold cross validation and we used k=10 that is commonly
favoured in neural network research [9]. After that, the network is trained ten
times, with each time having a different fold as the testing set. Additionally, we

4 Ferdinand Wittmann

ran this setup 20 times and took the mean of the test accuracy as a performance
measure. For both relu and tanh activation a learning rate of 0.01 was used and
the network was trained in 600 iterations (epochs).

The results are summarized in Table 2. We can directly see that feature set

Table 1. Performance Evaluation of the Network

Testing Accuracy in % Tanh S|Tanh M|Tanh L|Tanh|RelU S|RelU M|RelU L|RelU
Hidden Units: 5 Feature Set: 1 |50 35 65 50 40 31 64 45
Hidden Units: 10 Feature Set: 1|57 33 64 52 57 33 64 52
Hidden Units: 20 Feature Set: 1|52 37 70 53 50 42 65 52
Hidden Units: 5 Feature Set: 2 |47 42 56 48 44 44 54 47
Hidden Units: 10 Feature Set: 2|47 42 45 45 46 44 48 47
Hidden Units: 20 Feature Set: 2|47 42 45 45 45 42 53 47
Hidden Units: 5 Feature Set: 3 |47 42 44 44 - - - -
Hidden Units: 10 Feature Set: 3|51 43 50 48 - - - -
Hidden Units: 20 Feature Set: 3|48 42 42 44 - - - -

1 with 20-hidden units and tanh activation in each layer outperformed all the
other sets with an accuracy of 53%. Increasingly worse performance for the
bigger feature sets indicates that adding more features to the training set leads
to over-fitting the data [5]. That the bigger feature sets led to overfitting was
also indicated from the training, where the feature set 1 achieved a training
accuracy of up to 62%, feature set 2 up 67%, and feature set 3 up to 100%.
One has to note here that our testing accuracy achieved relatively poor results,
with only being 20% better than a random classifier. We can justify this bad
performance when looking again at the training accuracy. For feature set 1,
we could not achieve better training accuracy than 62%, and if we compare
our testing accuracy to this threshold, one can see that our network performed
relatively well. Lastly, we can see for which screen sizes our prediction works
the best. The network classifies 70% of the large screens correctly, 50% of the
medium-sized screens, and 30% of the small screens. These results are the same
as the authors of the original study concluded. In figure 1, the middle column
of the statistics show that for all of the features, the medium-sized screen is
significantly different two the other screen sizes individually, but not to them
combined. For the large and small screen, significant relations two the other
screen sizes combined exist. Our results indicate the same by classifying the
larger and smaller screen size more accurately. Lastly training the network with
the introduced Poisson transformation increased the network accuracy from 45%
to 53%. Concluding this analysis, we decided to use the best performing network
for the fitness evaluation of the genetic algorithm. The selected network uses tanh
activation with two hidden layers of 20 hidden units and incorporates the poisson
transformed features.

Predicting the phone screen-size from users web-search behaviour 5

5 GFS Evaluation

The GFS was initialized with the full feature set (3) concatenated with the
Poisson transformed variables. For evaluation of the GFS, we split our data
further into validation and training data (validation: 0.2, training: 0.8). This
step is advertised in neural network research to get accurate results and prevent
overfitting of the model. In figure 2., we can see the testing accuracy of each
chromosome in the population at the first, fifth, and tenth generation. We can
see clearly that the testing accuracy increases wit from generation to generation.
On the other hand, as can be seen in figure 3., the validation accuracy did not
consistently increase, indicating that our model overfits the data. Therefore we
introduced to the adam optimizer a weight decay of 10~ 3. This penalizes weights
of high magnitude [11]. After this alternation of the initial network structure,
we were able to achieve better validation accuracy, while our testing accuracy
decrease around 10%, showing again that we initially overfitted the data. Lastly,
we tested different mutation rates shown in table 3. The best validation accu-
racy was achieved for a network with population size 10 and 16 Generations.
The mutation rate was 0.1 for the first 8 Generations and 0.001 for the last 8
Generations. This leads to a first step where we value exploration of the solution
space more and then switch to fine-tuning of the feature selector. On the one
hand, we were able to reduce the feature set from 47 to 26 features with the
GFS. On the other hand, we had the results have shown to perform 4% worse
than the feature set 1. We believe that this loss in accuracy comes from further
reducing the dataset by introducing the validation set. This has an exception-
ally high impact in this case since our dataset with only 162 entries is very small.

Table 3: GF'S results
Mutation Rate Validation Accuracy in %
0.001 44
First Half: 0.1 - Second Half: 0.001 48
0.1 43

6 Network Compression

In this section, we are going to analyze Gedeon Harris network reduction tech-
nique introduced in 1997 [1]. The strength of this technique is that it compresses
the network post-training. This fits our network in the sense that it is designed
to be deployed on smartphones with different computing capabilities. The com-
pression works as follows [1]:

— Create a vector for each hidden-unit containing the result of the activation
unit for each training pattern (training data-point)

— Calculate the angle between all hidden unit vectors

— If the angle for two vectors is less than a treshold or more than 180—treshold
they are similar

6 Ferdinand Wittmann

accuracy

0 5 10 15 20 25 30 2 4 6 8 10 12 14
population Generations

Fig. 2. GFS without weight decay, for 3 Fig. 3. Validation accuracy for GFS with-
different Generations(0,5,10) (Mutation: out weight decay (Mutation: 0.1-0.001,
0.1-0.001, Crossover: 0.5) Crossover: 0.5)

2 a 6 8 10 Generations
population

Fig. 5. Validation accuracy of GFS
with weight decay (Mutation: 0.1-0.001,
Crossover: 0.5)

Fig.4. GFS with weight decay (Muta-
tion: 0.1-0.001, Crossover: 0.5)

Predicting the phone screen-size from users web-search behaviour 7

— For every pair of similar vectors delete one of the corresponding hidden units
and copy its weight vector onto the other one

We tested this technique together with the Tanh activation network. The Tanh
activation unit maps its output between -1 and 1, and therefore also our angle
range is between 180 deg and 0 deg, and we can directly apply the algorithm.
The main benefit of this algorithm is that ”This produces a network with one
fewer unit which requires no further training” [1]. This means we can reduce the
network to multiple different sizes for different devices of different computing
power with a single trained network.

7 Evaluation Network Compression

We evaluated the network compression similarly as we assessed the initial net-
work. We train a network once for ten different folds, then randomly shuffle
the data and repeat the first step 20 times. The result is the achieved average
accuracy over all iterations. Additionally, after every training, we compress the
network with the described technique and evaluate how many hidden units were
deleted and how our accuracy changed. We only applied the reduction to the
first layer of the network to simplify the experiment. Since our network is a
simple feed-forward network, the number of multiplications can be calculated
with equation 3, where n is the number of features, h1l is the number of hidden
neurons in layer 1, h2 the number of hidden neurons in layer two and m the
number of output neurons.

O(nhl 4+ h1h2 + h2m) (3)

By applying equation 3 to our network, we get (for feature set 1 with 7 features
and twice 10 hidden neurons) 200 multiplications. For every neuron that we can
delete, we reduce the network size by (7 + 10) multiplications and therefore get a
speedup of 11.8%. From the results, we can see that this compression technique

Table 2. Performance Evaluation of the Network Compression for a 2 layer Tanh
network with 10 hidden units per layer

Threshold angle|Avg number of deleted Units|Avg accuracy loss per unit
10 deg 1.02 10.52%

20 deg 1.63 6.89%

30 deg 2.85 4.61%

does not work for our neural network. If we delete all hidden unit vectors that
have an angle of below 10 degrees, we lose, on average 10% of prediction accuracy
for each hidden unit. Compared to this loss, we only lose around 2% of accuracy
when training the network with only five hidden units per layer. The same high
losses in accuracy are also the case for a pruning threshold of 20 degrees or 30
degrees.

8 Ferdinand Wittmann

8 Future Work Conclusion

Initially, we analyzed a small subset of features for this classification task, which
has shown to achieve an accuracy of 53%. By applying the signed inverse mass
probability function of the Poisson distribution and therefore applying prior
knowledge to the data, we managed to increase the performance of the network
significantly. Afterward, we tried to increase the network’s accuracy with a ge-
netic feature selector and achieve an accuracy of 48%. The GFS has shown to
increase the performance of the network gradually but still underperformed. This
is likely to the dataset being so small that the introduction of the validation set
led to a high loss in accuracy. Therefore in the future, it should be analyzed if the
described model can accurately predict a user’s phone size. Additionally, in the
future, the GFS can be further analyzed by introducing different crossover and
selection techniques. The described compression technique could not be applied
to our model, and other techniques have to be explored.

References

1. Gedeon, T.D., Harris, D.: Network Reduction Techniques. In: Int. Conf. on Neural
Networks Methodologies and Applications, AMSE, San Diego, (1991)

2. Kim, J., Thomas, P., Sankaranarayana, R., Gedeon, T., Yoon, H.-J. (2015). Un-
derstanding eye movements on mobile devices for better presentation of search re-
sults. Journal of the Association for Information Science and Technology, 67(11),
2607-2619. doi:10.1002/asi.23628

3. Bushaev, V.. Adam - latest rends in deep learning, Blog,
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-
6be9a291375¢ accessed 6 May 2020 (2018)

4. Bushaev, V.. Stochastic Gradient Descent with momentum, Blog,
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-
a84097641a5d accessed 6 May 2020 (2017)

5. Prechelt L. (1998) Early Stopping - But When?. In: Orr G.B., Miiller KR. (eds)

Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 1524.

Springer, Berlin, Heidelberg

Gopal, K.P.S | Kishore, K.S.: Normalization A PreprocessingStage

7. Potdar, Kedar, Pardawala, Taher, Pai, Chinmay.:A Comparative Study of Categor-
ical Variable Encoding Techniques for Neural Network Classifiers. In: International
Journal of Computer Applications (2017)

8. Chigozie, E.N, Winifred, I., Anthony, G., Stephen, M.:Activation Functions: Com-
parison of Trends inPractice and Research for Deep Learning

9. Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat
Comput 21, 137-146 (2011).

10. Leardi R, Boggia R., Terrile M.: Genetic algorithms as a strategy for feature se-
lection. In: Journal of Chemometrics (1992).

11. Zhang G., Wang C., Xu B., Grosse R.: Three Mechanisms of Weight Decay Regu-
larization (2019)

=

